• Title/Summary/Keyword: nonstationary signal

Search Result 74, Processing Time 0.026 seconds

A Study on the Identification of the EMG Signal in the Wavelet Transform Domain (웨이브렛 변환평면에서의 근전도신호 인식에 관한 연구)

  • 김종원;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.305-316
    • /
    • 1994
  • All physical data in the real world are nonstationary signals that have the time varying statistical characteristics. Although few algorithms suitable to process the nonstationary signals have ever been suggested, these are treated the nonstationary signals under the assumption that the nonstationary signal is a piece-wise stationary signal. Recently, statistical analysis algorithms for the nonstationary signal have concentrated so much interest. In this paper, nonstationary EMG signals are mapped onto the orthogonal wavelet transform domain so that the eigenvalue spread of its autocorrelation matrix could be more smaller than that in the time domain. Then the model in the wavelet transform domain and an algorithm to estimate the model parameters are suggested. Also, an test signal generated by a white gaussian noise and the EMG signal are identified, and the algorithm performance is considered in the sense of the mean square error and the evaluation parameters.

  • PDF

Real Time Implementittion of Time Varying Nonstationary Signal Identifier and Its Application to Muscle Fatigue Monitoring (비정상 시변 신호 인식기의 실시간 구현 및 근피로도 측정에의 응용)

  • Lee, Jin;Lee, Young-Seock;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.317-324
    • /
    • 1995
  • A need exists for the accurate identification of time series models having time varying parameters, as is important in the case of real time identification of nonstationary EMG signal. Thls paper describes real time identification and muscle fatigue monitoring method of nonstationary EMG signal. The method is composed of the efficient identifier which estimates the autoregressive parameters of nonstationary EMG signal model, and its real time implementation by using T805 parallel processing computer. The method is verified through experiment with real EMG signals which are obtained from surface electrode. As a result, the proposed method provides a new approach for real time Implementation of muscle fatigue monitoring and the execution time is 0.894ms/sample for 1024Hz EMG signal.

  • PDF

Energy Distribution Characteristics of Nonstationary Acoustic Emission Burst Signal Using Time-frequency Analysis (비정상 AE 진동감시 신호의 에너지 분포특성과 시간-주파수 해석)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Conventional Fourier analysis can give only limited information about the dynamic characteristics of nonstationary signals. Instead, time-frequency analysis is widely used to investigate the nonstationary signal in detail. Several time-frequency analysis methods are compared for a typical acoustic emission burst generated during the impact between a ferrite ceramic and aluminum plate. This AE burst is inherently nonstationary and random containing many frequency contents, which leads to severe interference between cross terms in bilinear convolution type distributions. The smoothing and reassignment processes can improve the readability and resolution of the results. Spectrogram and scalogram of the AE burst are obtained and compared to get the characteristics information. Renyi entropies are computed for various bilinear time-frequency transforms to evaluate the randomness. These bilinear transforms are reassigned by using the improved algorithm in discrete computation.

Two-Microphone Generalized Sidelobe Canceller with Post-Filter Based Speech Enhancement in Composite Noise

  • Park, Jinsoo;Kim, Wooil;Han, David K.;Ko, Hanseok
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.366-375
    • /
    • 2016
  • This paper describes an algorithm to suppress composite noise in a two-microphone speech enhancement system for robust hands-free speech communication. The proposed algorithm has four stages. The first stage estimates the power spectral density of the residual stationary noise, which is based on the detection of nonstationary signal-dominant time-frequency bins (TFBs) at the generalized sidelobe canceller output. Second, speech-dominant TFBs are identified among the previously detected nonstationary signal-dominant TFBs, and power spectral densities of speech and residual nonstationary noise are estimated. In the final stage, the bin-wise output signal-to-noise ratio is obtained with these power estimates and a Wiener post-filter is constructed to attenuate the residual noise. Compared to the conventional beamforming and post-filter algorithms, the proposed speech enhancement algorithm shows significant performance improvement in terms of perceptual evaluation of speech quality.

Time-Frequency Domain Analysis of Acoustic Signatures Using Pseudo Wigner-Ville Distribution

  • Jeon, Jae-Jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.674-679
    • /
    • 1994
  • Acoustic signal such as speech and scattered sound, are generally a nonstationary process whose frequency contents vary at any instant of time. For time-varying signal, whether a nonstationary or a deterministic transient signal, a traditional frequency domain representation does not reveal the contents of signal characteristics and may lead to erroneous results such as the loss of desired characteristics features or the mis-interpretation for a wrong conclusion. A time-frequency domain representation is needed to characterize such signatures. Pseudo Wigner-Ville distribution (PWVD) is ideally suited for portraying nonstationary signal time-frequency domain and carried out by adapting the fast Fourier transform algorithm. In this paper, the important properties of PWVD were investigated using both stationary and nonstationry signatures by numerical examples PWVD was applied to acoustic sigtnatures to demonstrate its application for time-ferquency domain analysis.

  • PDF

Noise Estimation based on Standard Deviation and Sigmoid Function Using a Posteriori Signal to Noise Ratio in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.818-827
    • /
    • 2008
  • In this paper, we propose a new noise estimation and reduction algorithm for stationary and nonstationary noisy environments. This approach uses an algorithm that classifies the speech and noise signal contributions in time-frequency bins. It relies on the ratio of the normalized standard deviation of the noisy power spectrum in time-frequency bins to its average. If the ratio is greater than an adaptive estimator, speech is considered to be present. The propose method uses an auto control parameter for an adaptive estimator to work well in highly nonstationary noisy environments. The auto control parameter is controlled by a linear function using a posteriori signal to noise ratio(SNR) according to the increase or the decrease of the noise level. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of much more simplicity and light computational load for estimating the stationary and nonstationary noise environments. The proposed algorithm is superior to conventional methods. To evaluate the algorithm's performance, we test it using the NOIZEUS database, and use the segment signal-to-noise ratio(SNR) and ITU-T P.835 as evaluation criteria.

Adaptive Threshold for Speech Enhancement in Nonstationary Noisy Environments (비정상 잡음환경에서 음질향상을 위한 적응 임계 치 알고리즘)

  • Lee, Soo-Jeong;Kim, Sun-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.386-393
    • /
    • 2008
  • This paper proposes a new approach for speech enhancement in highly nonstationary noisy environments. The spectral subtraction (SS) is a well known technique for speech enhancement in stationary noisy environments. However, in real world, noise is mostly nonstationary. The proposed method uses an auto control parameter for an adaptive threshold to work well in highly nonstationary noisy environments. Especially, the auto control parameter is affected by a linear function associated with an a posteriori signal to noise ratio (SNR) according to the increase or the decrease of the noise level. The proposed algorithm is combined with spectral subtraction (SS) using a hangover scheme (HO) for speech enhancement. The performances of the proposed method are evaluated ITU-T P.835 signal distortion (SIG) and the segment signal to-noise ratio (SNR) in various and highly nonstationary noisy environments and is superior to that of conventional spectral subtraction (SS) using a hangover (HO) and SS using a minimum statistics (MS) methods.

Motor Fault Monitoring using Instantaneous Frequency (순간주파수를 이용한 모터고장진단)

  • Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae;Kho, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2519-2521
    • /
    • 2005
  • Instantaneous frequency(IF) has important physical meaning for nonstationary signal. Motor current is well known that to be a nonstationary signal whose properties vary with respect to the time-varying normal operating conditions of the motor, particularly with load. Time-frequency methods can overcome the shortcomings of the traditional spectral analysis techniques, nonstationary signal analysis approaches have been introduced. We examine the concept of IF as a potential candidate for condition monitoring of motors.

  • PDF

Study on the Nonstationary Behavior of Slider Air Bearing Using Reassigned Time -frequency Analysis (재배치 시간-주파수 해석을 이용한 슬라이더 공기베어링의 비정상 거동 연구)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.255-262
    • /
    • 2006
  • Frequency spectrum using the conventional Fourier analysis gives adequate information about the dynamic characteristics of the slider air bearing for the linear and stationary cases. The intermittent contacts for the extremely low flying height, however, generate nonlinear and nonstationary vibration at the instant of contact. Nonlinear dynamic model should be developed to simulate the impulse response of the air bearing during slider-disk contact. Time-frequency analysis is widely used to investigate the nonstationary signal. Several time-frequency analysis methods are employed and compared for the slider vibration signal caused by the impact against an artificially induced scratch on the disk. The representative Wigner-Ville distribution leads to the severe interference problem by cross terms even though it gives good resolution both in time and frequency. The smoothing process improves the interference problem at the expense of resolution. In order to get the results with good resolution and little interference, the reassignment method is proposed. Among others the reassigned Gabor spectrogram shows the best resolution and readability with negligible interference.

Identification of Nonstationary Time Varying EMG Signal in the DCT Domain and a Real Time Implementation Using Parallel Processing Computer (DCT 평면에서의 비정상 시변 근전도 신호의 인식과 병렬처리컴퓨터를 이용한 실시간 구현)

  • Lee, Young-Seock;Lee, Jin;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.507-516
    • /
    • 1995
  • The nonstationary identifier in the DCT domain is suggested in this study for the identification of AR parameters of above-lesion upper-trunk electromyographic (EMG) signals as a means of developing a reliable real time signal to control functional electrical stimulation (FES) in paraplegics to enable primitive walking. As paraplegic shifts his posture from one attitude to another, there is transition period where the signal is clearly nonstationary. Also as muscle fatigues, nonstationarities become more prevalent even during stable postures. So, it requires a develpment of time varying nonstationary EMG signal identifier. In this paper, time varying nonstationary EMG signals are transformed into DCT domain and the transformed EMG signals are modeled and analyzed in the transform domain. In the DCT domain, we verified reduction of condition number and increment of the smallest eigenvalue of input correlation matrix that influences numerical properties and mean square error were compared with SLS algorithm, and the proposed algorithm is implemented using IMS T-805 parallel processing computer for real time application.

  • PDF