DOI QR코드

DOI QR Code

Long-term Testing and Analysis of a ScSZ/LaSrCuFe Cell

  • 발행 : 2008.12.31

초록

An electrolyte supported SOFC cell was tested at $800^{\circ}C$ in air for 3600 h with an applied current density of $200\;mA/cm^2$ to examine possible cathode degradation issues. A scandium- stabilized zirconia (ScSZ) with additional manganese doping (ScSZ: Mn) was used as electrolyte. A strontium and copper-doped lanthanum ferrite (LaSrCuFe) and platinum were used as cathode and quasi-anode material, respectively. The DC resistance was logged over the complete testing period. Additionally, impedance spectroscopy was used from time to time to track changes of the cell in-situ. Post-test analysis of the cell using methods like scanning electron microscopy imaging and other electrochemical testing methods allow the identification of different degradation sources. The results indicate a promising combination of electrolyte and cathode material in terms of chemical compatibility and electrical performance.

키워드

참고문헌

  1. J.W. Fergus, "Electrolytes for Solid Oxide Fuel Cells," J. Power Sources, 162 [1] 30-40 (2006) https://doi.org/10.1016/j.jpowsour.2006.06.062
  2. J.W. Fergus, "Materials Challenges for Solid-oxide Fuel Cells," JOM Journal of the Minerals, Metals and Materials Society, 59 [12] 56-62 (2007) https://doi.org/10.1007/s11837-007-0153-x
  3. H. Tu and U. Stimming, "Advances, Aging Mechanisms and Lifetime in Solid-oxide Fuel Cells," J. Power Sources, 127 [1-2] 284-93 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.025
  4. S.M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 5981-6000 (2003) https://doi.org/10.1016/j.actamat.2003.08.004
  5. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, and Y. Nakamura, "Electrical Conductivity of Stabilized Zirconia with Ytterbia and Scandia," Solid State Ionics, 79 137-42 (1995) https://doi.org/10.1016/0167-2738(95)00044-7
  6. M. Hirano, S. Watanabe, E. Kato, Y. Mizutani, M. Kawai, and Y. Nakamura, "High Electrical Conductivity and High Fracture Strength of Sc2O3-Doped Zirconia Ceramics with Submicrometer Grains," J. Am. Ceram. Soc., 82 [10] 2861-4 (2004) https://doi.org/10.1111/j.1151-2916.1999.tb02168.x
  7. H. Yokokawa, "Understanding Materials Compatibility," Annu. Rev. Mater. Res., 33 581-610 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.093856
  8. D. Perednis and L.J. Gauckler, "Solid Oxide Fuel Cells with Electrolytes Prepared Via Spray Pyrolysis," Solid State Ionics, 166 [3-4] 229-39 (2004) https://doi.org/10.1016/j.ssi.2003.11.011
  9. J. Wackerl, Untersuchungen zum Einsatz neuer Werkstoffe fur SOFC-Anwendungen (in German), in Dr.-Ing. Thesis, Rheinisch-Westfalische Technische Hochschule Aachen (RWTH), Aachen, 2007
  10. Equivalent Circuit (EquiVCRT) 4.51, B.A. Boukamp, 1989
  11. B.A. Boukamp, "A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems," Solid State Ionics, 20 [1] 31-44 (1985) https://doi.org/10.1016/0167-2738(86)90031-7
  12. S. Primdahl and M. Mogensen, "Mixed Conductor Anodes: Ni as Electrocatalyst for Hydrogen Conversion," Solid State Ionics, 152-153 597-608 (2002) https://doi.org/10.1016/S0167-2738(02)00393-4
  13. T. Kato, K. Nozaki, A. Negishi, K. Kato, A. Monma, Y. Kaga, S. Nagata, K. Takano, T. Inagaki, H. Yoshida, K. Hosoi, K. Hoshino, T. Akbay, and J. Akikusa, "Impedance Analysis of a Disk-type SOFC using Doped Lanthanum Gallate under Power Generation," J. Power Sources, 133 169-74 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.010
  14. S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt, "Investigation of High-Temperature Degradation of Platinum Thin Films with an In Situ Resistance Measurement Apparatus," J. Microelectromechanical Systems, 7 [1] 128-35 (1998) https://doi.org/10.1109/84.661395
  15. J.-S. Lee, H.-D. Park, S.-M. Shin, and J.-W. Park, "Agglomeration Phenomena of High Temperature Coefficient of Resistance Platinum Films Deposited by Electron Beam Evaporation," J. Mater. Sci. Lett., 16 [15] 1257-9 (1997) https://doi.org/10.1023/A:1018562505640
  16. P.K. Handa and J.C. Matthews, "Modeling of Sintering and Redispersion of Supported Metal Catalysts," AIChE J., 29 [5] 717-25 (1983) https://doi.org/10.1002/aic.690290504
  17. J.C. Chaston, "The Oxidation of the Platinum Metals," Platinum Met. Rev., 19 [4] 135-40 (1975)
  18. S. Messaadi, C. Pichard, and A.J. Tosser, "Reinterpretation of Thickness-dependent Conductivity of thin Platinum Films," J. Mater. Sci. Lett., 5 [9] 873-5 (1986) https://doi.org/10.1007/BF01729256
  19. D.-H. Peck, R.-H. Song, J.-H. Kim, T.-H. Lim, D.-R. Shin, D.-H. June, and K. Hilpert, "Electrical Conductivity of Scandia Stabilized Zirconia for Membranes in Solid Oxide Fuel Cells," in SOFC-IX, Quebec, Canada, Proceedings - Electrochemical Society (2005)
  20. Z. Lei and Q. Zhu, "Phase Transformation and Low Temperature Sintering of Manganese Oxide and Scandia Codoped Zirconia," Mater. Lett., 61 [6] 1311-4 (2007) https://doi.org/10.1016/j.matlet.2006.07.020
  21. B. LuerBen, E. Mutoro, H. Fischer, S. Günther, R. Imbihl, and J. Janek, "In Situ Imaging of Electrochemically Induced Oxygen Spillover on Pt/YSZ Catalysts," Angew. Chem., Int. Ed., 45 [9] 1473-6 (2006) https://doi.org/10.1002/anie.200503708
  22. A. Jaccoud, Electrochemical promotion of Pt catalysts for gas phase reactions. (in English), in Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 2007
  23. W.-P. Dow and T.-J. Huang, "Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst II. Effect of Oxygen Vacancy of Support on Catalytic Activity for CO Oxidation," J. Catal., 160 [2] 171-82 (1996) https://doi.org/10.1006/jcat.1996.0136

피인용 문헌

  1. Fabrication and performance of a ScMnSZ/LaSrCuFe cell with GDC interlayer for solid oxide fuel cells vol.30, pp.1-2, 2013, https://doi.org/10.1007/s10832-012-9723-6