Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride

염화(鹽貨)구리와 염화철(鹽貨鐵) 혼합용액(混合溶液)의 조성(組成)이 pH와 용액전위(溶液電位)에 미치는 영향(影響)

  • Lee, Man-Seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Son, Seong-Ho (Korea Institute of Industrial Technology, Incheon Technology Service Division)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 손성호 (한국생산기술연구원 인천기술지원본부)
  • Published : 2008.12.27

Abstract

In order to simulate the leaching solution of copper sulfide ore in $FeCl_3$ solutions, synthetic solutions with composition of $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$ were prepared. The concentration of iron and copper chloride was varied from 0.1 to 1 m in synthetic solutions. The effect of composition on the mixed solution pH and potential at $25^{\circ}C$ was measured. When HCl concentration was constant, the increase of CuCl concentration increased solution pH. The increase of other solutes excluding HCl and CuCl decreased solution pH owing to the increase of the activity coefficient of hydrogen ion. A high CuCl concentration favored the redox equilibrium in the direction of Cu(I), while $FeCl_3$ had the opposite effect.

염화 제 2철용액에 의한 구리황화광의 침출액을 모사하기 위해 $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$의 조성을 지닌 합성용액을 제조하였다. 합성용액에서 염화철과 염화구리의 농도를 0.1에서 1 m까지 변화시키며 성분의 농도변화에 따른 $25^{\circ}C$에서 용액의 pH와 전위의 변화를 측정하였다. 염산의 농도가 일정한 조건에서 CuCl의 농도를 증가시키면 용액의 pH는 증가하였다. 그러나 염산과 CuCl의 농도가 일정한 조건에서 다른 용질의 농도를 증가시키면 수소이온의 활동도계수가 증가하면서 용액의 pH는 감소하였다. CuCl의 농도를 증가시키면 염화 제 1구리이온이 안정해지는 방향으로 반응이 진행하나 $FeCl_3$은 반대의 효과를 나타냈다.

Keywords

References

  1. Cordoba, E. M., et al., 2008 : Leaching of chalcopyrite with ferric ion. Part I. General aspects, Hydrometallurgy, 93, pp. 81-87 https://doi.org/10.1016/j.hydromet.2008.04.015
  2. Cordoba, E. M., et al., 2008 : Leaching of chalcopyrite with ferric ion. Part I. Effect of redox potential, Hydrometallurgy, 93, pp. 88-96 https://doi.org/10.1016/j.hydromet.2008.04.016
  3. Lundstrom, M., et al., 2005 : Leaching of chalcopyrite in cupric chloride solution, Hydrometallurgy, 77, pp. 89-95 https://doi.org/10.1016/j.hydromet.2004.10.013
  4. Mcdonald, G. W. and Langer, S. H., 1983 : Cupric chloride leaching of model sulfur compounds for simple copper ore concentrates, Metallurgical Transactions B, 14B, pp. 559-570
  5. Antonijeviae, M. M. and Bogdanoviae, G. D., 2004 : Investigation of the leaching of chalcopyritic ore in acidic solution, Hydrometallurgy, 73, pp. 245-256 https://doi.org/10.1016/j.hydromet.2003.11.003
  6. Carranza, F., et al., 2004 : Treatment of copper concentrates containing chalcopyrite and non-ferrous sulphides by the BRISA process, Hydrometallurgy, 71, pp. 413-420 https://doi.org/10.1016/S0304-386X(03)00119-1
  7. Palencia, I., et al. 2002 : Treatment of secondary copper sulphide (chalcocite and covellite) by the BRISA process, Hydrometallurgy, 66, pp. 85-93 https://doi.org/10.1016/S0304-386X(02)00095-6
  8. Aydogan, S., Aras, A., and Canbazoglu, M., 2005 : Dissolution kinetics of sphalerite in acidic ferric chloride leaching, Chemical Engineering Journal, 114, pp. 67-72 https://doi.org/10.1016/j.cej.2005.09.005
  9. Park, K. H., Mohapatra, D., and Reddy, B. R., 2006 : A study on the acidified ferric chloride leaching of a complex (Cu-Ni-Co-Fe) matte, Separation and Purification Technology, 51, pp. 332-337 https://doi.org/10.1016/j.seppur.2006.02.013
  10. Lee, M. S., 2006 : Use of the Bromley equation for the analysis of ionic equilibria in mixed ferric and ferrous chloride solutions at $25^{\circ}C$, Metallurgical and Materials Transactions B, 37B, pp. 173-179
  11. Wang, M., Zhang, Y., and Muhammed, M., 1997 : Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions III. The system Cu(I,II)-$Cl^{-}-e$ at 298.15K, Hydrometallurgy, 45, pp. 53-72 https://doi.org/10.1016/S0304-386X(96)00074-6
  12. 이만승, Nicol, M. J., 2008 : 염화 제 1구리와 제 2구리 혼합용액의 이온평형, 대한금속재료학회지, 46(1), pp. 20-25
  13. Mcdonald, G. W., et al., 1984 : Equilibria associated with cupric chloride leaching of chalcopyrite concentrate, Hydrometallurgy, 13, pp. 125-135 https://doi.org/10.1016/0304-386X(84)90022-7
  14. Kimur, R. T., Haunschild, P. A., and Liddell, K. C., 1984 : A mathematical model for calculation of equilibrium solution speciations for the $FeCl_3-FeCl_2-CuCl_2-CuCl-HCl-NaCl-H_2O$ system at $25^{\circ}C$, Metallurgical Transactions B, 15B, pp. 213-219
  15. Von Bonsdorff, R., et al. 2005 : Electrochemical sensors for the $HydroCopper^{TM}$ process solution, Hydrometallurgy, 77, pp. 155-161 https://doi.org/10.1016/j.hydromet.2004.10.018
  16. Zemaitis, J. F., Clark, Jr. D. M., Rafal, M., and Scrivner, N. C., 1986 : Handbook of aqueous electrolyte thermodynamics, pp. 99-101, A Publication of the Design Institute for Physical Property Data, NY, USA