한국수학교육학회지시리즈E:수학교육논문집 (Communications of Mathematical Education)
- 제22권4호
- /
- Pages.489-503
- /
- 2008
- /
- 1226-6663(pISSN)
- /
- 2287-9935(eISSN)
대학수학에서 바람직한 선다형문제 만들기
Making Good Multiple Choice Problems at College Mathematics Classes
초록
대학수학에서 배우는 여러 가지 수학적 개념을 이해하는데 좋은 문제를 통해 도움을 주고 평가에서 공정성을 확보하기 위해 문제풀이에서 개념을 이용하는 능력과 개념에 대한 이해를 조사하는 문제의 예를 미분적분학 문제로 세 가지 유형을 다루었다. 잘못 만들어진 단답형문제와 선다형문제의 예를 제시하고 또 증명문제의 경우를 포함하여 선다형문제를 잘 만드는 방법에 대해 알아보고 최선의 문제가 되도록 노력을 하고 개념의 이해를 도와주며 최선의 문제가 될 수 있도록 더 많은 연구가 이루어지고 학생들에 대한 조사를 시도하여 그 결과를 분석하고 더 정선된 문제를 얻도록 노력을 한다.
It is not an easy matter to develop problems which help students understand mathematical concepts correctly and precisely. The aim of this paper is to review the merits and demerits of three problem types (i.e. one answer problems, multiple choice problems and proof problems) and to suggest some points that should be taken into consideration in problem making. First, we presented the merits and demerits of three types of problems by examining actual examples. Second, we discussed some examples of misleading problems and the ways to make desirable ones. Finally, on the basis of our examination and discussion, we suggested some points that should be kept in mind in problem making. The major suggestions are as follows; i) In making one answer problems, we should consider the possibility of sitting a solution by wrong precesses, ii) In formulating multiple choice tests which are layered for their easiness of grading, we should take into account the importance of checking whether the students are fully understanding the concepts, iii) We may depend on the previous research result that multiple choice tests for proof problems can be helpful for the students who have insufficient math background. Besides those suggestions, we made an overall proposal that we should endeavor to find ways to implement the demerits of each problem type and to develop instructive problems that can help students understanding of math.
키워드