DOI QR코드

DOI QR Code

The Optimization of Gel Electrolytes on Performance of Valve Regulated Lead Acid Batteries

  • An, Sang-Yong (Department of Chemistry, Pusan National University) ;
  • Jeong, Euh-Duck (High-Technology Components & Materials Research Center, Basic Science Institute) ;
  • Won, Mi-Sook (High-Technology Components & Materials Busan Center, Basic Science Institute) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University)
  • Published : 2008.05.20

Abstract

The gel electrolytes were prepared with sulfuric acid and phosphoric acid, where hydrophilic fumed silica was used as a gelling agent. The influences of gel electrolyte on performance of the valve regulated lead acid (VRLA) batteries were investigated employing capacity tests, electrochemical impedance spectroscopy and scanning electron microscopy. The initial capacities of the sulfuric gel VRLA batteries were higher than that of phosphoric gel VRLA batteries. The sulfuric gel VRLA battery using 1.210 specific gravity of sulfuric acid with hydrophilic fumed silica exhibited the highest capacity of 0.828Ah. In the impedance measurements, the ohmic and charge transfer resistances for the phosphoric gel VRLA batteries were higher thanthat of sulfuric gel batteries. The morphology of electrodes of phosphoric gel VRLA batteries were more deteriorated in the SEM image.

Keywords

References

  1. Vinal, G. W.; Storage Batteries; Jonh Wiley & Sons: New York, 1955; Vol 1, p 3
  2. Maja, M.; Penazzi, N. J. Power Sources 1989, 25, 224
  3. Tuphorn, H. J. Power Sources 1993, 46, 361 https://doi.org/10.1016/0378-7753(93)90032-V
  4. Brende, R.; Maintenance - Free batteries, 2nd, 340, Jonh Wiley: New York, 1997
  5. Valve-Regulated Lead-Acid Batteries; Wagner, R.; Rand, D. A. J.; Moseley, P. T.; Garche, J.; Parker, D. D., Eds.; Elsevier: Amsterdam, 2004; Vol 1, p 447
  6. Linden, D.; Handbook of Batteries, 2nd ed.; McGraw-Hill: New York, 1995; 25.1
  7. Winsel, V. E.; Hullmeine, U. J. Power Sources 1990, 30, 209 https://doi.org/10.1016/0378-7753(93)80078-4
  8. Hollenkamp, A. F.; Constanti, K. K.; Huey, A. M.; Koop, M. J.; Aputeanu, L. J. Power Sources 1992, 40, 125 https://doi.org/10.1016/0378-7753(92)80044-C
  9. Wagner, R. J. Power Sources 1995, 53, 153 https://doi.org/10.1016/0378-7753(94)01983-3
  10. Lam, L. T.; Lim, O. V.; Haigh, V. P. J. Power Sources 1998, 73, 36 https://doi.org/10.1016/S0378-7753(98)00020-2
  11. Meissner, E. J. Power Sources 1999, 78, 99 https://doi.org/10.1016/S0378-7753(99)00019-1
  12. Trinidad, F.; Saez Valenciano, F. J. Power Sources 2001, 95, 24 https://doi.org/10.1016/S0378-7753(00)00636-4
  13. Zeguris, G. C. J. Power Sources 2000, 88, 36 https://doi.org/10.1016/S0378-7753(99)00508-X
  14. Moseley, P. T. J. Power Sources 2000, 88, 71 https://doi.org/10.1016/S0378-7753(99)00511-X
  15. Nelson, R. F.; Sexton, E. D.; Olson, J. B.; Keyser, M.; Pesaran, A. J. Power Sources 2000, 88, 44 https://doi.org/10.1016/S0378-7753(99)00509-1
  16. Posch, G. J. Power Sources 1991, 33, 127 https://doi.org/10.1016/0378-7753(91)85055-2
  17. Jacke, O. Ger. Pantent No. DE 1194015; Sonnenschein, Germany
  18. Vinod, M. P.; Vijayamohanan, K. J. Power Sources 2000, 89, 88 https://doi.org/10.1016/S0378-7753(00)00380-3
  19. Shiomi, M.; Takahashi, K.; Tsubota, M. J. Power Sources 1993, 42, 173 https://doi.org/10.1016/0378-7753(93)80146-G
  20. Berndt, D. J. Power Sources 2001, 100, 29 https://doi.org/10.1016/S0378-7753(01)00881-3
  21. Lambert, D. W. H.; Greenwood, P. H. J.; Reed, M. C. J. Power Sources 2002, 107, 173 https://doi.org/10.1016/S0378-7753(01)01072-2
  22. Wu, L.; Chen, H. Y.; Jiang, X. J. Power Sources 2002, 107, 162 https://doi.org/10.1016/S0378-7753(01)01001-1
  23. Yoon, J. H.; Yang, J. E.; Shim, Y. B.; Won, M. S. Bull. Korean Chem. Soc. 2007, 28, 403 https://doi.org/10.5012/bkcs.2007.28.3.403
  24. Vinod, M. P.; Vijayamohanan, K.; Joshi, S. N. J. Power Sources 1998, 70, 103 https://doi.org/10.1016/S0378-7753(97)02609-8
  25. Salkind, A.; Atwater, T.; Singh, P.; Nelatury, S. J. Power Sources 2001, 96, 151 https://doi.org/10.1016/S0378-7753(01)00561-4

Cited by

  1. Battery Technologies for Large-Scale Stationary Energy Storage vol.2, pp.1, 2011, https://doi.org/10.1146/annurev-chembioeng-061010-114116
  2. A novel polysiloxane-based polymer as a gel agent for gel–VRLA batteries vol.23, pp.8, 2017, https://doi.org/10.1007/s11581-017-2040-y
  3. Influence of morphology of colloidal nanoparticle gels on ion transport and rheology vol.150, pp.21, 2019, https://doi.org/10.1063/1.5099056