DOI QR코드

DOI QR Code

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Shin, Hyo-Sul (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Kang, Chan (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Published : 2008.10.20

Abstract

This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.

Keywords

References

  1. Cho, S.; Shin, H.; Kang, C. Electrochim. Acta 2006, 51, 3781 https://doi.org/10.1016/j.electacta.2005.10.042
  2. Cho, S.; Kang, C. Electroanalysis 2007, 19, 2315 https://doi.org/10.1002/elan.200703982
  3. Selvaraju, T.; Ramaraj, R. J. Electroanal. Chem. 2005, 585, 290 https://doi.org/10.1016/j.jelechem.2005.09.005
  4. Park, S.; Chung, T. D.; Kim, H. C. Anal. Chem. 2003, 75, 3046 https://doi.org/10.1021/ac0263465
  5. Pietron, J. J.; Murray, R. W. J. Phys. Chem. B 1999, 103, 4440 https://doi.org/10.1021/jp984588w
  6. El-Deab, M. S.; Ohsaka, T. Electrochem. Commun. 2002, 4, 288 https://doi.org/10.1016/S1388-2481(02)00263-1
  7. Kumar, S.; Zou, S. J. Phys. Chem. B 2005, 109, 15707 https://doi.org/10.1021/jp051981a
  8. Takasu, Y.; Iwazaki, T.; Sugimoto, W.; Murakami, Y. Electrochem. Commun. 2000, 2, 671 https://doi.org/10.1016/S1388-2481(00)00101-6
  9. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819 https://doi.org/10.1021/ja043602h
  10. Bergamaski, K.; Pinheiro, A. L. N.; Teixeira-Neto, E.; Nart, F. C. J. Phys. Chem. B 2006, 110, 19271 https://doi.org/10.1021/jp063337h
  11. Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. J. Phys. Chem. B 2006, 110, 13393 https://doi.org/10.1021/jp061690h
  12. Harnish, J. A.; Pris, A. D.; Porter, M. D. J. Am. Chem. Soc. 2001, 123, 5829 https://doi.org/10.1021/ja010564i
  13. Zhong, C. J.; Zheng, W. X.; Leibowitz, F. L. Electrochem. Commun. 1999, 1, 72 https://doi.org/10.1016/S1388-2481(99)00008-9
  14. Leibowitz, F. L.; Zheng, W.; Maye, M. M.; Zhong, C.-J. Anal. Chem. 1999, 71, 5076 https://doi.org/10.1021/ac990752f
  15. Shin, H.; Kang, C. Anal. Sci. 2003, 19, 1667 https://doi.org/10.2116/analsci.19.1667
  16. Ryoo, H.; Kim, Y.; Lee, J.; Shin, W.; Myung, N.; Hong, H.-G. Bull. Korean Chem. Soc. 2006, 27, 672 https://doi.org/10.5012/bkcs.2006.27.5.672
  17. Finot, M. O.; Braybrook, G. D.; McDermott, M. T. J. Electroanal. Chem. 1999, 466, 234 https://doi.org/10.1016/S0022-0728(99)00154-0
  18. Reetz, M. T.; Helbig, W. J. Am. Chem. Soc. 1994, 116, 7401 https://doi.org/10.1021/ja00095a051
  19. Song, J.; Kang, C. Bull. Korean Chem. Soc. 2007, 28, 1683 https://doi.org/10.5012/bkcs.2007.28.10.1683
  20. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27 https://doi.org/10.1021/ar9602664
  21. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801
  22. Zu, Y.; Fan, F.-R. F.; Bard, A. J. J. Phys. Chem. B 1999, 103, 6272 https://doi.org/10.1021/jp991056m
  23. Lillie, G. C.; Holmes, S. M.; Dryfe, R. A. W. J. Phys. Chem. B 2002, 106, 12101 https://doi.org/10.1021/jp026799d
  24. Shi, C.; Anson, F. C. J. Phys. Chem. B 1998, 102, 9850 https://doi.org/10.1021/jp982605b
  25. Shi, C.; Anson, F. C. J. Phys. Chem. B 2001, 105, 1047 https://doi.org/10.1021/jp003741v
  26. Chung, T. D.; Anson, F. C. Anal. Chem. 2001, 73, 337 https://doi.org/10.1021/ac0009447

Cited by

  1. Electrochemical deposition of gold at liquid–liquid interfaces studied by thin organic film-modified electrodes vol.16, pp.7, 2012, https://doi.org/10.1007/s10008-011-1613-3