DOI QR코드

DOI QR Code

Synthesis and Biological Properties of Luotonin A Derivatives

  • Published : 2008.10.20

Abstract

A series of new derivatives on the ring A of luotonin A were prepared by Friedländer condensation of 6,7,8,10- tetrahydropyrrolo[2,1-b]quinazoline-6,10-dione and suitably substituted 2-aminobenzaldehydes and 2- aminoacetophenones. Their inhibitory activities on topoisomerases and cytotoxicities against selected human cancer cell lines were evaluated. Among the compounds tested, 8-fluoroluotonin A showed similar inhibitory activity on topoisomerase I comparable to camptothecin while luotonin A and 9-hydroxyluotonin A showed 1.37 and 0.94 times stronger inhibitory activity, respectively, on topoisomerase II compared to etoposide. Some derivatives of luotonin A showed moderate cytotoxicity. The possible relationship between the inhibitory activity on Topo II and the cytotoxicity of luotonin A and its analogues, thus, cannot be ruled out.

Keywords

References

  1. Xiao, P.-G. A Pictorial Encyclopedia of Chinese Medical Herbs (Japanese edition); Chuokoron-sha, Inc.: Tokyo, 1992; Vol III, p 125
  2. Xiao, P.-G. A Pictorial Encyclopedia of Chinese Medical Herbs (Japanese edition); Chuokoron-sha, Inc.: Tokyo, 1992; Vol III, p 125
  3. Xiao, P.-G.; Qou, G.-L.; Wang, H.-L.; Lui, L.-S.; Zheng, Y.-L.; Jia, Z.-J.; Deng, Z.-B. Chinese J. Pharmacol. Toxicol. 1988, 232
  4. Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1997, 46, 541 https://doi.org/10.3987/COM-97-S65
  5. Cagir, A.; Jones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M. J. Am. Chem. Soc. 2003, 125, 13628 https://doi.org/10.1021/ja0368857
  6. Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Bioorg. Med. Chem. Lett. 2004, 14, 1193 https://doi.org/10.1016/j.bmcl.2003.12.048
  7. Zhang, Q.; Rivkin, A.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 5774 https://doi.org/10.1021/ja025606x
  8. Blagg, B. S. J.; Boger, D. L. Tetrahedron 2002, 58, 6343 https://doi.org/10.1016/S0040-4020(02)00633-6
  9. Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215 https://doi.org/10.1021/ol026408d
  10. Comins, D. L.; Nolan, J. M. Org. Lett. 2001, 3, 4255 https://doi.org/10.1021/ol0169271
  11. Toyota, M.; Komori, C.; Ihara, M. J. Org. Chem. 2000, 65, 7110 https://doi.org/10.1021/jo000816i
  12. Twin, H.; Batey, R. A. Org. Lett. 2004, 6, 4913 https://doi.org/10.1021/ol0479848
  13. Chavan, S. P.; Sivappa, R. Tetrahedron 2004, 60, 9931 https://doi.org/10.1016/j.tet.2004.08.025
  14. Harayama, T.; Hori, A.; Serban, G.; Morikami, Y.; Matsumoto, T.; Abe, H.; Takeuchi, Y. Tetrahedron 2004, 60, 10645 https://doi.org/10.1016/j.tet.2004.09.016
  15. Bowman, W. R.; Cloonan, M. O.; Fletcher, A. J.; Stein, T. Org. Biomol. Chem. 2005, 3, 1460 https://doi.org/10.1039/b501509j
  16. Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69, 4563-4566 https://doi.org/10.1021/jo040153v
  17. Lee, E. S.; Park, J. G.; Jahng, Y. Tetrahedron Lett. 2003, 44, 1883 https://doi.org/10.1016/S0040-4039(03)00080-7
  18. Osborne, D.; Stevenson, P. J. Tetrahedron Lett. 2002, 43, 5469 https://doi.org/10.1016/S0040-4039(02)01049-3
  19. Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2002, 43, 1905 https://doi.org/10.1016/S0040-4039(02)00135-1
  20. Dallavalle, S.; Merlini, L. Tetrahedron Lett. 2002, 43, 1835 https://doi.org/10.1016/S0040-4039(02)00140-5
  21. Toyota, M.; Komori, C.; Ihara, M. Heterocycles 2002, 56, 101 https://doi.org/10.3987/COM-01-S(K)49
  22. Molina, P.; Tarraga, A.; Gonzalez-Tejero, A. Synthesis 2000, 11, 1523
  23. Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1999, 51, 1593 https://doi.org/10.3987/COM-99-8554
  24. Kelly, T. R.; Chamberland, S.; Silva, R. A. Tetrahedron Lett. 1999, 40, 2723 https://doi.org/10.1016/S0040-4039(99)00349-4
  25. Wang, H.; Ganesan, A. Tetrahedron Lett. 1998, 39, 9097 https://doi.org/10.1016/S0040-4039(98)02004-8
  26. Curran, D. P.; Tangirala, R. S. 228th National Meeting of Am. Chem. Soc (August 22-26, Philadelphia, PA) 2004, Abs. ORG 398
  27. Tangirala, R.; Antony, S.; Agama, K.; Pommier, Y.; Curran, D. P. Synlett 2005, 18, 2843
  28. Ma, Z.; Hano, Y.; Nomura, T.; Chen, Y. Bioorg. Med. Chem. Lett. 2004, 14, 1193 https://doi.org/10.1016/j.bmcl.2003.12.048
  29. Cagir, A.; Jones, S. H.; Eisenhauser, B. M.; Gao, R.; Hecht, S. M. Bioorg. Med. Chem. Lett. 2004, 14, 2051 https://doi.org/10.1016/j.bmcl.2004.02.069
  30. Cagir, A.; Eisenhauser, B. M.; Gao, R.; Thomas, S. J.; Hecht, S. M. Bioorg. Med. Chem. 2004, 12, 6287 https://doi.org/10.1016/j.bmc.2004.08.052
  31. Dallavalle, S.; Merlini, L.; Beretta, G. L.; Tinelli, S.; Zunino, F. Bioorg. Med. Chem. Lett. 2004, 14, 5757 https://doi.org/10.1016/j.bmcl.2004.09.039
  32. Cheng, K.; Rahier, N.; Eisenhauser, B. M.; Gao, R.; Thomas, S. J.; Hecht, S. M. J. Am. Chem. Soc. 2005, 127, 838 https://doi.org/10.1021/ja0442769
  33. For a review see: Ma, Z.-Z.; Hano, Y.; Nomura, T. Heterocycles 2005, 65, 2203 https://doi.org/10.3987/REV-05-599
  34. Chang, H. W.; Kim, S. I.; Jung, H. J.; Jahng, Y. Heterocycles 2003, 60, 1359 https://doi.org/10.3987/COM-03-9744
  35. Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, Jr., A. B.; Stewart, K. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15387 https://doi.org/10.1073/pnas.242259599
  36. Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A. B. J. Med. Chem. 2005, 48, 2336 https://doi.org/10.1021/jm049146p
  37. Xiao, X.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 1408 https://doi.org/10.1021/jm051116e
  38. Redinbo, M. R.; Stewart, L.; Kuhn, P.; Champoux, J. J.; Hol, W. G. Science 1998, 279, 1504 https://doi.org/10.1126/science.279.5356.1504
  39. Stewart, L.; Redinbo, M. R.; Qiu, X.; Hol, W. G.; Champoux, J. J. Science 1998, 279, 1534 https://doi.org/10.1126/science.279.5356.1534
  40. Jung, H. W.; Oh, J. S.; Lee, S. H.; Liang, J. L.; Kim, D. H.; Rahman, A. F. M. M.; Jahng, Y. Bull. Korean Chem. Soc. 2007, 28, 1863 https://doi.org/10.5012/bkcs.2007.28.10.1863
  41. Zhao, L.-X.; Park, H.-g.; Jew, S.-s.; Lee, M. K.; Kim, Y. J.; Thapa, P.; Karki, R.; Jahng, Y.; Jeong, B.-S.; Lee, E.-S. Bull. Korean Chem. Soc. 2007, 28, 970 https://doi.org/10.5012/bkcs.2007.28.6.970
  42. Friedlander, P. Ber. 1882, 15, 2572 https://doi.org/10.1002/cber.188201502219
  43. For a review see: Cheng, C.-C.; Yang, S.-J. Org. React. 1982, 28, 37
  44. Thummel, R. P. Synlett 1992, 1, and references therein
  45. Opie, J. W.; Smith, L. I. Org. Syn. Col. Vol. III 1955, 56
  46. Majewicz, G.; Caluwe, O. A. J. Org. Chem. 1974, 39, 720 https://doi.org/10.1021/jo00919a033
  47. Shaw, K. N. F.; Gudmundson, A.; Morris, A. G. Biochem. Prep. 1962, 9, 12
  48. Katritzky, A. R.; Wang, Z.; Hall, C. D.; Ji, Y.; Akhmedov, N. G. Tetrahedron Lett. 2002, 43, 3449 https://doi.org/10.1016/S0040-4039(02)00496-3
  49. Mosettig, E.; Czadek, K. Monat. Chem. 1931, 57, 291 https://doi.org/10.1007/BF01522123
  50. Shen, W.; Coburn, C. A.; Bornmann, W. G.; Danishefsky, S. J. J. Org. Chem. 1993, 58, 611 https://doi.org/10.1021/jo00055a012
  51. Fukuda, M.; Nishio, K.; Kanazawa, F.; Ogasawara, H.; Ishida, T.; Arioka, H.; Bojanowsji, K.; Oka, M.; Saijo, N. Cancer Res. 1996, 56, 789
  52. Skehan, P.; Streng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warrenm, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1107 https://doi.org/10.1093/jnci/82.13.1107
  53. Kang, D. H.; Kim, J. S.; Jung, M. J.; Lee, E. S.; Jahng, Y.; Kwon, Y.; Na, Y. Bioorg. Med. Chem. Lett. 2008, 18, 1520

Cited by

  1. Weinreb Amidation as the Cornerstone of an Improved Synthetic Route to A-Ring-Modified Derivatives of Luotonin A vol.17, pp.12, 2012, https://doi.org/10.3390/molecules171011363
  2. Novel pyrrolo-quinazolino-quinoline analogues of the natural alkaloids and their inclusion molecular complexes in the native cyclodextrins: experimental versus theoretical study vol.76, pp.1-2, 2013, https://doi.org/10.1007/s10847-012-0176-y
  3. B-Ring-Aryl Substituted Luotonin A Analogues with a New Binding Mode to the Topoisomerase 1-DNA Complex Show Enhanced Cytotoxic Activity vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0095998
  4. A Facile Oxidative Opening of the C-Ring in Luotonin A and Derivatives vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091540
  5. Recent Advances in the Studies on Luotonins vol.16, pp.6, 2011, https://doi.org/10.3390/molecules16064861
  6. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries pp.01986325, 2018, https://doi.org/10.1002/med.21546
  7. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields pp.1460-4752, 2018, https://doi.org/10.1039/C8NP00014J
  8. ChemInform Abstract: Synthesis and Biological Properties of Luotonin A Derivatives. vol.40, pp.10, 2009, https://doi.org/10.1002/chin.200910195
  9. D-Ring-Modified Analogues of Luotonin A with Reduced Planarity: Design, Synthesis, and Evaluation of Their Topoisomerase Inhibition-Associated Cytotoxicity vol.2019, pp.None, 2008, https://doi.org/10.1155/2019/2514524
  10. Copper Supported onto Magnetic Nanoparticles as an Efficient Catalyst for the Synthesis of Triazolobenzodiazepino[7,1‐ b ]quinazolin‐11(9 H )‐ones via Click N ‐Arylation Re vol.6, pp.6, 2021, https://doi.org/10.1002/slct.202003724