DOI QR코드

DOI QR Code

Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network

  • Published : 2008.04.20

Abstract

Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and $12.77{^{\circ}C}$, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = $40.7{^{\circ}C}$). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.

Keywords

References

  1. Meylan, W. H.; Howard, P. H.; Boethling, R. S. Environ. Toxicol. Chem. 1996, 15, 100 https://doi.org/10.1897/1551-5028(1996)015<0100:IMFEWS>2.3.CO;2
  2. Ran, Y.; Yalkowsky, S. H. J. Chem. Inf. Comput. Sci. 2001, 41, 354 https://doi.org/10.1021/ci000338c
  3. Nimko, J.; Kukkonen, J.; Riikonen, K. J. Hazard Mater. 2002, 91, 43 https://doi.org/10.1016/S0304-3894(01)00379-X
  4. Dearden, J. C. Sci. Total Environ. 1991, 109/110, 59 https://doi.org/10.1016/0048-9697(91)90170-J
  5. Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M. Cryst. Growth Des. 2001, 1, 261 https://doi.org/10.1021/cg010009s
  6. Godavarthy, S. S.; Robinson, R. L.; Gasem, K. A. M. Ind. Eng. Chem. Res. 2006, 45, 5117 https://doi.org/10.1021/ie051130p
  7. Gao, J.; Wang, X.; Yu, X.; Li, X.; Wang, H. J. Mol. Model 2006, 12, 521 https://doi.org/10.1007/s00894-005-0087-6
  8. Krzyzaniak, J. F.; Myrdal, P. B.; Simamora, P.; Yalkowsky, S. H. Ind. Eng. Chem. Res. 1995, 34, 2530 https://doi.org/10.1021/ie00046a039
  9. Karthikeyan, M.; Glen, R. C.; Bender, A. J. Chem. Inf. Model. 2005, 45, 581 https://doi.org/10.1021/ci0500132
  10. Toropov, A.; Toropova, A.; Ismailov, T.; Bonchev, D. J. Mol. Struct. (Theochem) 1998, 424, 237 https://doi.org/10.1016/S0166-1280(97)00151-6
  11. Firpo, M.; Gavernet, L.; Castro, E. A.; Toropov, A. J. Mol. Struct.(Theochem) 2000, 501-502, 419 https://doi.org/10.1016/S0166-1280(99)00453-4
  12. Toropov, A.; Toropova, A. J. Mol. Struct. (Theochem) 2002, 581, 11 https://doi.org/10.1016/S0166-1280(01)00733-3
  13. Yao, X. J.; Wang, Y. W.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Chemom. Intell. Lab. Syst. 2002, 62, 217 https://doi.org/10.1016/S0169-7439(02)00017-5
  14. Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P. J. Chem. Inf. Comput. Sci. 2002, 42, 693 https://doi.org/10.1021/ci0155053
  15. Karthikeyan, M.; Glen, R. C.; Bender, A. J. Chem. Inf. Model 2005, 45, 581 https://doi.org/10.1021/ci0500132
  16. Ajmani, S.; Rogers, S. C.; Barley, M. H.; Livingstone, D. J. J. Chem. Inf. Model 2006, 46, 2043 https://doi.org/10.1021/ci050559o
  17. Gramatica, P.; Giani, E.; Papa, E. J. Mol. Graph. Model 2007, 25, 7556
  18. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors in Methods and Principles in Medicinal Chemistry; Mannhold, R.; Kubinyi, H.; Timmerman, H., Eds.; Wiley-VCH: Weinheim, 2000
  19. Sutter, J. M.; Kalivas, J. H.; Lang, P. M. J. Chemometr. 1992, 6, 217 https://doi.org/10.1002/cem.1180060406
  20. Malinowski, E. R. Factor Analysis in Chemistry; Wiley-Interscience: New York, 2002
  21. Katritzky, A. R.; Tulp, I.; Fara, D. C.; Lauria, A.; Maran, U.; Acree, W. E. J. Chem. Inf. Model 2005, 45, 913 https://doi.org/10.1021/ci0496189
  22. Hemmateenejad, B.; Akhond, M.; Miri, R.; Shamsipur, M. J. Chem. Inf. Comput. Sci. 2003, 43, 1328 https://doi.org/10.1021/ci025661p
  23. Hemmateenejad, B.; Shamsipur, M. Internet Electron. J. Mol. Des. 2004, 3, 316
  24. Jalali-Heravi, M.; Kyani, A. J. Chem. Inf. Comput. Sci. 2004, 44, 1328 https://doi.org/10.1021/ci0342270
  25. Hemmateenejad, B.; Safarpour, M. A.; Miri, R.; Nesari, N. J. Chem. Inf. Model. 2005, 45, 190 https://doi.org/10.1021/ci049766z
  26. Hemmateenejad, B.; Safarpour, M.; Miri, R.; Taghavi, F. J. Comput. Chem. 2004, 25, 1495 https://doi.org/10.1002/jcc.20066
  27. Depczynski, U.; Frost, V. J.; Molt, K. Anal. Chim. Acta 2000, 420, 217 https://doi.org/10.1016/S0003-2670(00)00893-X
  28. Hemmateenejad, B. Chemom. Intell. Lab. Syst. 2005, 75, 231 https://doi.org/10.1016/j.chemolab.2004.09.005
  29. Goldberg, D. E. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley-Longman: Reading, MA, USA, 2000
  30. Cho, S. J.; Hermsmeier, M. A. J. Chem. Inf. Comput. Sci. 2002, 42, 927 https://doi.org/10.1021/ci010247v
  31. Despagne, F.; Massart, D. L. Analyst 1998, 123, 157 https://doi.org/10.1039/a805562i
  32. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Germany, 1999
  33. Meiler, J.; Meusinger, R.; Will, M. J. Chem. Inf. Comput. Sci. 2000, 40, 1169 https://doi.org/10.1021/ci000021c
  34. Habibi-Yangjeh, A.; Nooshyar, M. Phys. Chem. Liq. 2005, 43, 239 https://doi.org/10.1080/00319100500061233
  35. Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 139 https://doi.org/10.5012/bkcs.2005.26.1.139
  36. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 2007 https://doi.org/10.5012/bkcs.2005.26.12.2007
  37. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. J. Mol. Model. 2006, 12, 338 https://doi.org/10.1007/s00894-005-0050-6
  38. Tabaraki, R.; Khayamian, T.; Ensafi, A. A. J. Mol. Graph. Model 2006, 25, 46 https://doi.org/10.1016/j.jmgm.2005.10.012
  39. Habibi-Yangjeh, A. Phys. Chem. Liq. 2007, 45, 471 https://doi.org/10.1080/00319100601089679
  40. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M. Indian J. Chem. 2007, 46B, 478
  41. Habibi-Yangjeh, A. Bull. Korean Chem. Soc. 2007, 28, 1472 https://doi.org/10.5012/bkcs.2007.28.9.1472
  42. Habibi-Yangjeh, A.; Esmailian, M. Bull. Korean Chem. Soc. 2007, 28, 1477 https://doi.org/10.5012/bkcs.2007.28.9.1477
  43. Modarresi, H.; Dearden, J. C.; Modarress, H. J. Chem. Inf. Model. 2006, 46, 930 https://doi.org/10.1021/ci050307n
  44. HyperChem Release 7; HyperCube, Inc.: http://www.hyper.com
  45. Todeschini, R. Milano Chemometrics and QSPR Group; http://www.disat.unimib.it/vhm
  46. Matlab 6.5. Mathworks; 1984-2002
  47. SPSS for Windows, Statistical Package for IBM PC; SPSS Inc.: http://www.spss.com
  48. Cho, S. J.; Hermsmeier, M. A. J. Chem. Inf. Comput. Sci. 2002, 42, 927 https://doi.org/10.1021/ci010247v
  49. Baumann, K.; Albert, H.; Von Korff, M. J. Chemometr. 2002, 16, 339 https://doi.org/10.1002/cem.730
  50. Lu, Q.; Shen, G.; Yu, R. J. Comput. Chem. 2002, 23, 1357 https://doi.org/10.1002/jcc.10149
  51. Ahmad, S.; Gromiha, M. M. J. Comput. Chem. 2003, 24, 1313 https://doi.org/10.1002/jcc.10298
  52. Deeb, O.; Hemmateenejad, B.; Jaber, A.; Garduno-Juarez, R.; Miri, R. Chemosphere 2007, 67, 2122 https://doi.org/10.1016/j.chemosphere.2006.12.098
  53. Genetic Algorithm and Direct Search Toolbox User's Guide; The Mathworks Inc.: Massachusetts, 2002
  54. Neural Network Toolbox User's Guide; The Mathworks Inc.: Massachusetts, 2002

Cited by

  1. Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression vol.142, pp.9, 2011, https://doi.org/10.1007/s00706-011-0510-x
  2. QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine vol.15, pp.3, 2011, https://doi.org/10.1007/s11030-010-9283-0
  3. A medicinal chemistry perspective on melting point: matched molecular pair analysis of the effects of simple descriptors on the melting point of drug-like compounds vol.3, pp.5, 2012, https://doi.org/10.1039/c2md00313a
  4. Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions vol.22, pp.11, 2013, https://doi.org/10.1007/s00044-012-0440-0
  5. QSAR study on hERG inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods vol.22, pp.9, 2013, https://doi.org/10.1007/s00044-012-0412-4
  6. Capturing the Crystal: Prediction of Enthalpy of Sublimation, Crystal Lattice Energy, and Melting Points of Organic Compounds vol.53, pp.1, 2013, https://doi.org/10.1021/ci3005012
  7. QSAR study of mGlu5 inhibitors by genetic algorithm-multiple linear regressions vol.23, pp.6, 2014, https://doi.org/10.1007/s00044-013-0896-6
  8. Simple QSPR Modeling for Prediction of the GC Retention Indices of Essential Oil Compounds vol.18, pp.6, 2015, https://doi.org/10.1080/0972060X.2014.884768
  9. Economical Synthesis of 13C-Labeled Opiates, Cocaine Derivatives and Selected Urinary Metabolites by Derivatization of the Natural Products vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045329
  10. Solubility of Bicalutamide, Megestrol Acetate, Prednisolone, Beclomethasone Dipropionate, and Clarithromycin in Subcritical Water at Different Temperatures from 383.15 to 443.15 K vol.62, pp.3, 2017, https://doi.org/10.1021/acs.jced.6b00997
  11. Optimization of Material Selection for Whitening Cream: Artificial Neural Networks and Genetic Algorithm Approach vol.728, pp.1662-9795, 2017, https://doi.org/10.4028/www.scientific.net/KEM.728.416
  12. Facile synthesis of imidazo[1,2-a]pyridines promoted by room-temperature ionic liquids under ultrasound irradiation vol.149, pp.10, 2018, https://doi.org/10.1007/s00706-018-2238-3
  13. Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network vol.139, pp.12, 2008, https://doi.org/10.1007/s00706-008-0951-z
  14. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water vol.140, pp.1, 2009, https://doi.org/10.1007/s00706-008-0049-7
  15. QSAR study of the 5-HT1A receptor affinities of arylpiperazines using a genetic algorithm–artificial neural network model vol.140, pp.5, 2009, https://doi.org/10.1007/s00706-008-0084-4
  16. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis vol.140, pp.11, 2009, https://doi.org/10.1007/s00706-009-0185-8
  17. Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009, https://doi.org/10.1002/kin.20386
  18. Prediction of antibacterial activity of pleuromutilin derivatives by genetic algorithm–multiple linear regression (GA–MLR) vol.141, pp.5, 2010, https://doi.org/10.1007/s00706-010-0299-z
  19. QSPR analysis for melting point of fatty acids using genetic algorithm based multiple linear regression (GA-MLR) vol.353, pp.None, 2013, https://doi.org/10.1016/j.fluid.2013.06.008
  20. Quantitative structure activity relationship study of p38α MAP kinase inhibitors vol.10, pp.1, 2008, https://doi.org/10.1016/j.arabjc.2013.05.009
  21. A Way towards Reliable Predictive Methods for the Prediction of Physicochemical Properties of Chemicals Using the Group Contribution and other Methods vol.9, pp.8, 2008, https://doi.org/10.3390/app9081700
  22. Solid-liquid phase equilibrium of praziquantel in eleven pure solvents: Determination, model correlation, solvent effect, molecular simulation and thermodynamic analysis vol.154, pp.None, 2008, https://doi.org/10.1016/j.jct.2020.106327
  23. Solubility Measurement and Model Correlating of 6-Propyl-2-Thiouracil in Four Binary Solvents at 278.15-323.15 K vol.66, pp.6, 2021, https://doi.org/10.1021/acs.jced.1c00071
  24. Deep neural networks in chemical engineering classrooms to accurately model adsorption equilibrium data vol.36, pp.None, 2008, https://doi.org/10.1016/j.ece.2021.04.003
  25. Solubility, solvent effect, molecular simulation and thermodynamic properties of clozapine in twelve pure solvents vol.158, pp.None, 2021, https://doi.org/10.1016/j.jct.2021.106398