References
- Meylan, W. H.; Howard, P. H.; Boethling, R. S. Environ. Toxicol. Chem. 1996, 15, 100 https://doi.org/10.1897/1551-5028(1996)015<0100:IMFEWS>2.3.CO;2
- Ran, Y.; Yalkowsky, S. H. J. Chem. Inf. Comput. Sci. 2001, 41, 354 https://doi.org/10.1021/ci000338c
- Nimko, J.; Kukkonen, J.; Riikonen, K. J. Hazard Mater. 2002, 91, 43 https://doi.org/10.1016/S0304-3894(01)00379-X
- Dearden, J. C. Sci. Total Environ. 1991, 109/110, 59 https://doi.org/10.1016/0048-9697(91)90170-J
- Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M. Cryst. Growth Des. 2001, 1, 261 https://doi.org/10.1021/cg010009s
- Godavarthy, S. S.; Robinson, R. L.; Gasem, K. A. M. Ind. Eng. Chem. Res. 2006, 45, 5117 https://doi.org/10.1021/ie051130p
- Gao, J.; Wang, X.; Yu, X.; Li, X.; Wang, H. J. Mol. Model 2006, 12, 521 https://doi.org/10.1007/s00894-005-0087-6
- Krzyzaniak, J. F.; Myrdal, P. B.; Simamora, P.; Yalkowsky, S. H. Ind. Eng. Chem. Res. 1995, 34, 2530 https://doi.org/10.1021/ie00046a039
- Karthikeyan, M.; Glen, R. C.; Bender, A. J. Chem. Inf. Model. 2005, 45, 581 https://doi.org/10.1021/ci0500132
- Toropov, A.; Toropova, A.; Ismailov, T.; Bonchev, D. J. Mol. Struct. (Theochem) 1998, 424, 237 https://doi.org/10.1016/S0166-1280(97)00151-6
- Firpo, M.; Gavernet, L.; Castro, E. A.; Toropov, A. J. Mol. Struct.(Theochem) 2000, 501-502, 419 https://doi.org/10.1016/S0166-1280(99)00453-4
- Toropov, A.; Toropova, A. J. Mol. Struct. (Theochem) 2002, 581, 11 https://doi.org/10.1016/S0166-1280(01)00733-3
- Yao, X. J.; Wang, Y. W.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Chemom. Intell. Lab. Syst. 2002, 62, 217 https://doi.org/10.1016/S0169-7439(02)00017-5
- Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P. J. Chem. Inf. Comput. Sci. 2002, 42, 693 https://doi.org/10.1021/ci0155053
- Karthikeyan, M.; Glen, R. C.; Bender, A. J. Chem. Inf. Model 2005, 45, 581 https://doi.org/10.1021/ci0500132
- Ajmani, S.; Rogers, S. C.; Barley, M. H.; Livingstone, D. J. J. Chem. Inf. Model 2006, 46, 2043 https://doi.org/10.1021/ci050559o
- Gramatica, P.; Giani, E.; Papa, E. J. Mol. Graph. Model 2007, 25, 7556
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors in Methods and Principles in Medicinal Chemistry; Mannhold, R.; Kubinyi, H.; Timmerman, H., Eds.; Wiley-VCH: Weinheim, 2000
- Sutter, J. M.; Kalivas, J. H.; Lang, P. M. J. Chemometr. 1992, 6, 217 https://doi.org/10.1002/cem.1180060406
- Malinowski, E. R. Factor Analysis in Chemistry; Wiley-Interscience: New York, 2002
- Katritzky, A. R.; Tulp, I.; Fara, D. C.; Lauria, A.; Maran, U.; Acree, W. E. J. Chem. Inf. Model 2005, 45, 913 https://doi.org/10.1021/ci0496189
- Hemmateenejad, B.; Akhond, M.; Miri, R.; Shamsipur, M. J. Chem. Inf. Comput. Sci. 2003, 43, 1328 https://doi.org/10.1021/ci025661p
- Hemmateenejad, B.; Shamsipur, M. Internet Electron. J. Mol. Des. 2004, 3, 316
- Jalali-Heravi, M.; Kyani, A. J. Chem. Inf. Comput. Sci. 2004, 44, 1328 https://doi.org/10.1021/ci0342270
- Hemmateenejad, B.; Safarpour, M. A.; Miri, R.; Nesari, N. J. Chem. Inf. Model. 2005, 45, 190 https://doi.org/10.1021/ci049766z
- Hemmateenejad, B.; Safarpour, M.; Miri, R.; Taghavi, F. J. Comput. Chem. 2004, 25, 1495 https://doi.org/10.1002/jcc.20066
- Depczynski, U.; Frost, V. J.; Molt, K. Anal. Chim. Acta 2000, 420, 217 https://doi.org/10.1016/S0003-2670(00)00893-X
- Hemmateenejad, B. Chemom. Intell. Lab. Syst. 2005, 75, 231 https://doi.org/10.1016/j.chemolab.2004.09.005
- Goldberg, D. E. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley-Longman: Reading, MA, USA, 2000
- Cho, S. J.; Hermsmeier, M. A. J. Chem. Inf. Comput. Sci. 2002, 42, 927 https://doi.org/10.1021/ci010247v
- Despagne, F.; Massart, D. L. Analyst 1998, 123, 157 https://doi.org/10.1039/a805562i
- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Germany, 1999
- Meiler, J.; Meusinger, R.; Will, M. J. Chem. Inf. Comput. Sci. 2000, 40, 1169 https://doi.org/10.1021/ci000021c
- Habibi-Yangjeh, A.; Nooshyar, M. Phys. Chem. Liq. 2005, 43, 239 https://doi.org/10.1080/00319100500061233
- Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 139 https://doi.org/10.5012/bkcs.2005.26.1.139
- Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 2007 https://doi.org/10.5012/bkcs.2005.26.12.2007
- Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. J. Mol. Model. 2006, 12, 338 https://doi.org/10.1007/s00894-005-0050-6
- Tabaraki, R.; Khayamian, T.; Ensafi, A. A. J. Mol. Graph. Model 2006, 25, 46 https://doi.org/10.1016/j.jmgm.2005.10.012
- Habibi-Yangjeh, A. Phys. Chem. Liq. 2007, 45, 471 https://doi.org/10.1080/00319100601089679
- Habibi-Yangjeh, A.; Danandeh-Jenagharad, M. Indian J. Chem. 2007, 46B, 478
- Habibi-Yangjeh, A. Bull. Korean Chem. Soc. 2007, 28, 1472 https://doi.org/10.5012/bkcs.2007.28.9.1472
- Habibi-Yangjeh, A.; Esmailian, M. Bull. Korean Chem. Soc. 2007, 28, 1477 https://doi.org/10.5012/bkcs.2007.28.9.1477
- Modarresi, H.; Dearden, J. C.; Modarress, H. J. Chem. Inf. Model. 2006, 46, 930 https://doi.org/10.1021/ci050307n
- HyperChem Release 7; HyperCube, Inc.: http://www.hyper.com
- Todeschini, R. Milano Chemometrics and QSPR Group; http://www.disat.unimib.it/vhm
- Matlab 6.5. Mathworks; 1984-2002
- SPSS for Windows, Statistical Package for IBM PC; SPSS Inc.: http://www.spss.com
- Cho, S. J.; Hermsmeier, M. A. J. Chem. Inf. Comput. Sci. 2002, 42, 927 https://doi.org/10.1021/ci010247v
- Baumann, K.; Albert, H.; Von Korff, M. J. Chemometr. 2002, 16, 339 https://doi.org/10.1002/cem.730
- Lu, Q.; Shen, G.; Yu, R. J. Comput. Chem. 2002, 23, 1357 https://doi.org/10.1002/jcc.10149
- Ahmad, S.; Gromiha, M. M. J. Comput. Chem. 2003, 24, 1313 https://doi.org/10.1002/jcc.10298
- Deeb, O.; Hemmateenejad, B.; Jaber, A.; Garduno-Juarez, R.; Miri, R. Chemosphere 2007, 67, 2122 https://doi.org/10.1016/j.chemosphere.2006.12.098
- Genetic Algorithm and Direct Search Toolbox User's Guide; The Mathworks Inc.: Massachusetts, 2002
- Neural Network Toolbox User's Guide; The Mathworks Inc.: Massachusetts, 2002
Cited by
- Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression vol.142, pp.9, 2011, https://doi.org/10.1007/s00706-011-0510-x
- QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine vol.15, pp.3, 2011, https://doi.org/10.1007/s11030-010-9283-0
- A medicinal chemistry perspective on melting point: matched molecular pair analysis of the effects of simple descriptors on the melting point of drug-like compounds vol.3, pp.5, 2012, https://doi.org/10.1039/c2md00313a
- Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions vol.22, pp.11, 2013, https://doi.org/10.1007/s00044-012-0440-0
- QSAR study on hERG inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods vol.22, pp.9, 2013, https://doi.org/10.1007/s00044-012-0412-4
- Capturing the Crystal: Prediction of Enthalpy of Sublimation, Crystal Lattice Energy, and Melting Points of Organic Compounds vol.53, pp.1, 2013, https://doi.org/10.1021/ci3005012
- QSAR study of mGlu5 inhibitors by genetic algorithm-multiple linear regressions vol.23, pp.6, 2014, https://doi.org/10.1007/s00044-013-0896-6
- Simple QSPR Modeling for Prediction of the GC Retention Indices of Essential Oil Compounds vol.18, pp.6, 2015, https://doi.org/10.1080/0972060X.2014.884768
- Economical Synthesis of 13C-Labeled Opiates, Cocaine Derivatives and Selected Urinary Metabolites by Derivatization of the Natural Products vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045329
- Solubility of Bicalutamide, Megestrol Acetate, Prednisolone, Beclomethasone Dipropionate, and Clarithromycin in Subcritical Water at Different Temperatures from 383.15 to 443.15 K vol.62, pp.3, 2017, https://doi.org/10.1021/acs.jced.6b00997
- Optimization of Material Selection for Whitening Cream: Artificial Neural Networks and Genetic Algorithm Approach vol.728, pp.1662-9795, 2017, https://doi.org/10.4028/www.scientific.net/KEM.728.416
- Facile synthesis of imidazo[1,2-a]pyridines promoted by room-temperature ionic liquids under ultrasound irradiation vol.149, pp.10, 2018, https://doi.org/10.1007/s00706-018-2238-3
- Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network vol.139, pp.12, 2008, https://doi.org/10.1007/s00706-008-0951-z
- Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water vol.140, pp.1, 2009, https://doi.org/10.1007/s00706-008-0049-7
- QSAR study of the 5-HT1A receptor affinities of arylpiperazines using a genetic algorithm–artificial neural network model vol.140, pp.5, 2009, https://doi.org/10.1007/s00706-008-0084-4
- Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis vol.140, pp.11, 2009, https://doi.org/10.1007/s00706-009-0185-8
- Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009, https://doi.org/10.1002/kin.20386
- Prediction of antibacterial activity of pleuromutilin derivatives by genetic algorithm–multiple linear regression (GA–MLR) vol.141, pp.5, 2010, https://doi.org/10.1007/s00706-010-0299-z
- QSPR analysis for melting point of fatty acids using genetic algorithm based multiple linear regression (GA-MLR) vol.353, pp.None, 2013, https://doi.org/10.1016/j.fluid.2013.06.008
- Quantitative structure activity relationship study of p38α MAP kinase inhibitors vol.10, pp.1, 2008, https://doi.org/10.1016/j.arabjc.2013.05.009
- A Way towards Reliable Predictive Methods for the Prediction of Physicochemical Properties of Chemicals Using the Group Contribution and other Methods vol.9, pp.8, 2008, https://doi.org/10.3390/app9081700
- Solid-liquid phase equilibrium of praziquantel in eleven pure solvents: Determination, model correlation, solvent effect, molecular simulation and thermodynamic analysis vol.154, pp.None, 2008, https://doi.org/10.1016/j.jct.2020.106327
- Solubility Measurement and Model Correlating of 6-Propyl-2-Thiouracil in Four Binary Solvents at 278.15-323.15 K vol.66, pp.6, 2021, https://doi.org/10.1021/acs.jced.1c00071
- Deep neural networks in chemical engineering classrooms to accurately model adsorption equilibrium data vol.36, pp.None, 2008, https://doi.org/10.1016/j.ece.2021.04.003
- Solubility, solvent effect, molecular simulation and thermodynamic properties of clozapine in twelve pure solvents vol.158, pp.None, 2021, https://doi.org/10.1016/j.jct.2021.106398