DOI QR코드

DOI QR Code

A New Diarylethene with Donor-acceptor Group for Reversible Photo-induced Electrochemical Switching

  • Kim, Eun-Kyoung (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Mi-Young (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Kim, Kyong-Tae (School of Chemistry and Molecular Engineering, Seoul National University)
  • Published : 2008.04.20

Abstract

A new diarylethene compound with donor and acceptor substituent was synthesized from 2,3-bis(2-methylbenzo[b]thiophene-3-yl)hexafluorocyclopentene (BTF) over 5 steps. The donor-acceptor structured BTF compound (TBTFE) showed spectral change to a longer wavelength through photochromism with a high cyclization quantum yield (0.56). The 3,4-ethylenedioxythiophene (T) and carboethoxy (E) groups directly connected to BTF unit promoted electrical change accompanied with the photoisomerization of the BTF unit. Photo-induced electrical switching was achieved from a photocell containing TBTFE doped polymer film, which showed reversible and stable current change over repeated cycles by the alternative UV/Vis irradiation, as estimated by the I-V plot.

Keywords

References

  1. Brown, G. H. Photochromism; Wiley-Interscience: New York, 1971
  2. Durr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems; Elsevier: Amsterdam, 1990
  3. Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985 https://doi.org/10.1246/bcsj.71.985
  4. Tsivgoulis, G. M.; Lehn, J.-M. Adv. Mater. 1997, 9, 627 https://doi.org/10.1002/adma.19970090806
  5. Gilat, S. L.; Kawai, S. H.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1994, 1011
  6. Kawai, S. H.; Lehn, J.-M. Chem. Eur. J. 1995, 1, 275 https://doi.org/10.1002/chem.19950010504
  7. Kawai, S. H.; Gilat, S. L.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1993, 1439
  8. Gilat, S. L.; Kawai, S. H.; Lehn, J.-M. Chem. Eur. J. 1995, 1, 285 https://doi.org/10.1002/chem.19950010505
  9. Tsivgoulis, G. M.; Lehn, J.-M. Angew. Chem. 1995, 107, 1188 https://doi.org/10.1002/ange.19951071009
  10. Tsivgoulis, G. M.; Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1995, 34, 1119 https://doi.org/10.1002/anie.199511191
  11. Tsivgoulis, G. M.; Lehn, J.-M. Chem. Eur. J. 1996, 2, 1399 https://doi.org/10.1002/chem.19960021112
  12. Fernándes-Acebes, A.; Lehn, J.-M. Adv. Mater. 1998, 10, 1519 https://doi.org/10.1002/(SICI)1521-4095(199812)10:18<1519::AID-ADMA1519>3.0.CO;2-R
  13. Irie, M.; Sakemura, M.; Okinaka, M.; Uchida, K. J. Org. Chem. 1995, 60, 8305 https://doi.org/10.1021/jo00130a035
  14. Kim, E.; Choi, Y.-K.; Lee, M.-H. Macromolecules 1999, 32, 4855 https://doi.org/10.1021/ma9903409
  15. Kim, M.-S.; Maruyama, H.; Kawai, T.; Irie, M. Chem. Mater. 2003, 15, 4539 https://doi.org/10.1021/cm030304v
  16. Kim, J.; Song, K.-B.; Park, K.-H.; Lee, H. W.; Kim, E. Japanese J. Appl. Phys. 2002, 41, 5222 https://doi.org/10.1143/JJAP.41.5222
  17. Cho, H.; Kim, E. Macromolecules 2002, 35, 8684 https://doi.org/10.1021/ma025576i
  18. Cho, S. Y.; Yoo, M.; Shin, H.-W.; Ahn, K.-H.; Kim, Y.-R.; Kim, E. Optical Materials 2003, 21, 279 https://doi.org/10.1016/S0925-3467(02)00150-7
  19. Jeong, Y.-C.; Yang, S. I.; Ahn, K.-H.; Kim, E. Chem. Comm. 2005, 19, 2503
  20. Kawai, T.; Kunitake, T. Chem. Lett. 1999, 905
  21. Tanio, N.; Irie, M. Jpn. J. Appl. 1994, 34, 1550
  22. Kawai, T.; Nakashima, Y.; Irie, M. Adv. Mater. 2005, 17, 309 https://doi.org/10.1002/adma.200400191
  23. Ebisawa, F.; Hoshino, M.; Sukegawa, K. Appl. Phys. Lett. 1994, 65, 2919 https://doi.org/10.1063/1.112530
  24. Kang, J.-W.; Kim, J.-S.; Lee, C.-M.; Kim, E.; Kim, J.-J. Electronic Letters 2000, 36, 1641 https://doi.org/10.1049/el:20001140
  25. Kang, J.-W.; Kim, J.-S.; Lee, C.-M.; Kim, E.; Kim, J.-J. Appl. Phys. Lett. 2002, 80, 1710 https://doi.org/10.1063/1.1459111
  26. Lee, H. W.; Kim, E. Mol. Cryst. Liq. Cryst. 2005, 431, 581 https://doi.org/10.1080/15421400590947540
  27. Choi, H.; Lee, H. W.; Kang, Y.; Kim, E.; Kang, S. O.; Ko, J. J. Org. Chem. 2005, 70, 8291 https://doi.org/10.1021/jo050710t
  28. Kim, M.; Kim, K.; Kim, E. J. Kor. Soc. Imaging Sci. Technol. 2005, 11, 119
  29. Irie, M.; Mohri, M. J. Org. Chem. 1988, 53, 803 https://doi.org/10.1021/jo00239a022
  30. Uchida, K.; Nakayama, M.; Irie, M. Bull. Chem. Soc. Jpn. 1990, 63, 1311 https://doi.org/10.1246/bcsj.63.1311
  31. Nakayama, M.; Hayashi, K.; Irie, M. J. Org. Chem. 1990, 55, 2592 https://doi.org/10.1021/jo00296a011
  32. Nakayama, M.; Hayashi, K.; Irie, M. Bull. Chem. Soc. Jpn. 1991, 64, 789 https://doi.org/10.1246/bcsj.64.789
  33. Irie, M. Chem. Rev. 2000, 100, 1685 https://doi.org/10.1021/cr980069d
  34. Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985 https://doi.org/10.1246/bcsj.71.985
  35. Hanazawa, M.; Sumiya, R.; Horikawa, Y.; Irie, M. J. Chem. Soc., Chem. Commun. 1992, 206
  36. Irie, M. Mol. Cryst. Liq. Cryst. 1993, 227, 263 https://doi.org/10.1080/10587259308030979
  37. Sonmez, G.; Meng, H.; Zhang, Q.; Wudl, F. Adv. Funct. Mater. 2003, 13, 726 https://doi.org/10.1002/adfm.200304317
  38. Gilat, S. L.; Kawai, S. H.; Lehn, J.-M. Chem. Eur. J. 1995, 1, 275 https://doi.org/10.1002/chem.19950010504
  39. Gilat, S. L.; Kawai, S. H.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1993, 1439
  40. Mejiritski, A.; Polykarpov, A. Y.; Sarker, A. M.; Neckkers, D. C. J. Photochem. Photobiol. 1997, 108, 289 https://doi.org/10.1016/S1010-6030(97)00077-4
  41. Kwon, D.-H.; Shin, H.-W.; Kim, E.; Boo, D. W.; Kim, Y.-R. Chem. Phys. Lett. 2000, 328, 234 https://doi.org/10.1016/S0009-2614(00)00893-9
  42. Kim, E.; Kim, M.; Kim, K. Tetrahedron 2006, 62, 6814 https://doi.org/10.1016/j.tet.2006.04.089
  43. Irie, M.; Eriguchi, T.; Takada, T.; Uchida, K. Tetrahedron 1997, 53, 214
  44. Matsuda, K.; Irie, M. J. Am. Chem. Soc. 2000, 122, 7195 https://doi.org/10.1021/ja000605v
  45. Casado, J.; Pappenfus, T. M.; Miller, L. L.; Mann K. R.; Orti, E. P.; Viruela, M.; Pou-Amerigo, R.; Hernandez, V.; Lopez-Navarrete, J. T. J. Am. Chem. Soc. 2003, 125, 2524 https://doi.org/10.1021/ja027835p
  46. Pappenfus, T. M.; Raff, J. D.; Hukkanen, E. J.; Burney, J. R.; Casado, J.; Drew, S. M.; Miller, L. L.; Mann, K. R. J. Org. Chem. 2003, 67, 6015 https://doi.org/10.1021/jo025572b
  47. Li, G.; Kobmehl, G.; Welzel, H.-P.; Plieth, W.; Zhu, H. Macromol. Chem. Phys. 1998, 199, 2737
  48. Peters, A.; Branda, N. R. J. Am. Chem. Soc. 2003, 125, 3404 https://doi.org/10.1021/ja028764x
  49. Bender, T. P.; Graham, J. F.; Duff, J. M. Chem. Mater. 2001, 13, 4105 https://doi.org/10.1021/cm010281p
  50. Kim, E.; Lee, H. J. Mater. Chem. 2006, 16, 1384 https://doi.org/10.1039/b517175j
  51. Baron, R.; Onopriyenko, A.; Katz, E.; Lioubashevski, O.; Willner, I.; Wang, S.; Tian, H. Chem. Commun. 2006, 2147

Cited by

  1. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators vol.114, pp.24, 2014, https://doi.org/10.1021/cr500249p
  2. Tunable Photodynamic Switching of DArE@PAF-1 for Carbon Capture vol.25, pp.28, 2015, https://doi.org/10.1002/adfm.201502069
  3. Electrical properties of photochromic organic systems (review) vol.50, pp.5, 2016, https://doi.org/10.1134/S0018143916050040