Effects of surface treatment on the osseointegration potential of orthodontic mini-implant

분사처리 후 산부식 표면처리된 교정용 미니 임플랜트의 골유착능에 관한 연구

  • Jeon, Mi-Sun (Graduate School of Clinical Dental Science, The Catholic University of Korea) ;
  • Kang, Yoon-Goo (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea) ;
  • Mo, Sung-Seo (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea) ;
  • Lee, Keun-Bye (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea) ;
  • Kook, Yoon-Ah (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea) ;
  • Kim, Seong-Hun (Division of Orthodontics, Department of Dentistry, The Catholic University of Korea)
  • 전미선 (가톨릭대학교 임상치과학대학원) ;
  • 강윤구 (가톨릭대학교 의과대학 치과학교실 교정과) ;
  • 모성서 (가톨릭대학교 의과대학 치과학교실 교정과) ;
  • 이근혜 (가톨릭대학교 의과대학 치과학교실 교정과) ;
  • 국윤아 (가톨릭대학교 의과대학 치과학교실 교정과) ;
  • 김성훈 (가톨릭대학교 의과대학 치과학교실 교정과)
  • Published : 2008.10.30

Abstract

Objective: The purpose of this study was to compare the torque resistance to removal of sandblasted large grit and acid etched (SLA) surface treated orthodontic mini-implants and smooth surface orthodontic mini-implants as well as performing histologic observations. Methods: Two groups of custom screw shaped orthodontic mini-implants (C-implant, 1.8 mm outer diameter $\times$ 9.5 mm length, Cimplant, Seoul, Korea) were designated. 22 SLA treated C-implants (SLA group) and 22 machined surface C-implants (machined group) were placed in the tibia metaphysis of 11 adult New Zealand white rabbits. Following a 6-week healing period, the rabbits were sacrificed. Subsequently, the C-implants were removed under reverse torque rotation with a digital torque measuring device and independent t-test was performed. Selected tissues were prepared for histologic observation. Results: The SLA group presented a higher mean removal torque value (6.286 Ncm) than the machined group (4.491 Ncm) which was statistically significant (p < 0.005). Histologic observation revealed a trend of more new bone formation in contact with the screw surface in the SLA group than the smooth group. Conclusions: The results of this study suggested that SLA surface treatment can enhance the osseintegration potential for C-orthodontic mini-implants.

본 연구에서는 교정 치료 시 골내 고정원으로 사용되는 교정용 임플랜트의 표면처리 여부가 골유착능에 있어서 어떠한 효과를 보이는지 제거회전력의 측정을 통해 알아보고자 하였으며, 그에 따른 교정력 적용의 확장과 임상적 의의를 알아보고자 하였다. 실험군은 분사처리 후 산부식(Sand-blasted Large grit, and Acid etched, SLA) 표면 처리된 교정용 미니 임플랜트인 C-implant (Cimplant, Seoul, Korea)를 사용하였으며 대조군은 같은 디자인이지만 표면 처리를 하지 않은 평활면 C-implant를 사용하였다. 실험군과 대조군을 각각 2개씩 11마리의 가토 경골에 식립하였고 식립 후 6주에 가토를 희생시켜 제거회전력을 측정하여 t-test를 통하여 두 군의 제거회전력 차이의 통계적 유의성을 알아보았으며 조직표본을 만들어 조직소견을 관찰하였다. 실험결과 제거회전력은 SLA 처리한 C-implant 군이 평활면 C-implant 군보다 통계적으로 유의성 있게 높은 결과를 보였다 (p < 0.05). 평활면 C-implant 군의 평균 제거회전력 값은 4.614 Ncm이고, SLA C-implant 군의 평균 제거회전력 값은 6.286 Ncm로, SLA 군이 평활면 군보다 73% 더 높은 제거회전력에 대한 저항성을 나타내었다. 이상의 연구 결과에서 SLA표면처리가 C-implant의 골유착능을 증가시켰음을 알 수 있었다. 따라서 표면 처리된 교정용 미니 임플랜트는 기존의 임플랜트에 비해 좀 더 강한 힘에 저항할 수 있으며 탈락률을 낮출 수 있을 것으로 생각된다.

Keywords

References

  1. Gainforth BL, Higley LB. A study of orthodontic anchorage possibilities in basal bone. Am J Orthod Oral Surg 1945; 31:406-16
  2. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17:266-9
  3. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7
  4. Costa A, Raffaini M, Melsen B. Miniscrew as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 1998;13:201-9
  5. Melsen B, Verna C. A rational approach to orthodontic anchorage. Prog Orthod 1999;1:10-22 https://doi.org/10.1034/j.1600-9975.2000.d01-4.x
  6. Park HS. A new protocol of the sliding mechanics with micro- implant anchorage (M.I.A). Korean J Orthod 2000;30:677- 85
  7. Park HS. Clinical study on success rate of micro screw implants for orthodontic anchorage. Korean J Orthod 2003;33: 151-6
  8. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 1997;8:442-7 https://doi.org/10.1034/j.1600-0501.1997.080601.x
  9. Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants 1998;13:611-9
  10. Cordioli G, Majzoub Z, Piatelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 2000;15:668-74
  11. Klokkevold PR, Johnson P, Dadgostari S, Caputo A, Davies JE, Nishimura RD. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin Oral Implants Res 2001;12:350-7 https://doi.org/10.1034/j.1600-0501.2001.012004350.x
  12. Lee SJ, Chung KR The effect of early loading on the direct bone-to-implant surface contact of the orthodontic osseointegrated titanium implant. Korean J Orthod 2001;31:173-85
  13. Cho SA, Jung SK. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 2003;24:4859-63 https://doi.org/10.1016/S0142-9612(03)00377-6
  14. Chung KR, Kim SH, Kook YA. The C-orthodontic micro- implant. J Clin Orthod 2004;38:478-86
  15. Chung K, Kim SH, Kook Y. C-orthodontic microimplant for distalization of mandibular dentition in Class III correction. Angle Orthod 2005;75:119-28
  16. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegration titanium implants. Requirements for ensuring a long-lasting, direct bone-to-bone implant anchorage in man. Acta Orthop Scand 1981;52:155-70 https://doi.org/10.3109/17453678108991776
  17. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75
  18. Ivanoff CJ, Sennerby L, Johansson C, Rangert B, Lekholm U. Influence of implant diameters on the integration of screw implant. An experimental study in rabbits. Int J Oral Maxillofac Surg 1997;26:141-8
  19. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korean J Orthod 2003;33:11-20
  20. Cha JY, Yoon TM, Hwang CJ. Insertion and removal torques according to orthodontic mini-screw design. Korean J Orthod 2008;38:5-12 https://doi.org/10.4041/kjod.2008.38.1.5
  21. Carlsson I, Röstlund T, Albreksson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-4
  22. Darvell BW, Samman N, Luk WK, Clark RK, Tideman H. Contamination of titanium castings by aluminium oxide blasting. J Dent 1995;23:319-22 https://doi.org/10.1016/0300-5712(94)00003-X
  23. Conchran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D. Evaluation of an endosseous titanium implant with sandblasted and acid-etched surface in the canine mandible: radiographic results. Clin Oral Implants Res 1996;7: 240-52 https://doi.org/10.1034/j.1600-0501.1996.070306.x
  24. Baker D, London RM, O'Neal R. Rate of pull-out strength gain of dual-etched titanium implants: a comparative study in rabbits. Int J Oral Maxillofac Implants 1999;14:722-8
  25. Oh NH, Kim SH, Kook YA, Lee GH, Kang YG, Mo SS. Removal torque of sandblasted, large grit, acid etched treated mini-implant. Korean J Orthod 2006;36:324-30
  26. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  27. Costa A, Dalstra M, Melsen B. L'Aarhus anchorage system. Ortognatodonzia Italiana 2000;9:487-96