Biodegradation of Kerosene by Pseudomonas aeruginosa K14

Pseudomonas aeruginosa Kl4를 이용한 등유(Kerosene)의 생물학적 분해

  • Kim, Jee-Young (Department of Biological Engineering, Kyonggi University) ;
  • Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
  • 김지영 (경기대학교 일반대학원 생명공학과) ;
  • 이상섭 (경기대학교 일반대학원 생명공학과)
  • Published : 2008.06.30

Abstract

In this study, we isolated 32 strains of kerosene degrading bacteria from oil contaminated soil by enrichment culture. Isolates were screened for kerosene degradation efficiencies and K14 were selected which had the highest removal efficiency for 1,000 mg/L of kerosene. K14 were identified as Pseudomonas aeruginosa by morphological, biochemical test and 16S rDNA analysis. The optimal culture condition were determined as initial inoculated cell concentration, 1.0 g/L; substrate concentration, 1,000 mg/L; temperature $30^{\circ}C$; pH 7. When we enforced batch test in this condition, K14 degraded 72% of kerosene with 1,000 mg/L during 72 hr. And, at low concentration (200 mg/L), K14 degraded 95.8% of kerosene during 48 hr. As a result, kerosene biodegradation by Pseudomonas aeruginosa K14 could be useful for clean up of groundwater and soil contaminated with crude oil.

본 연구에서는 유류로 오염된 토양에서 증식배양을 통해 등유 분해 균주 32개체를 순수 분리하였다. 분리한 개체에 대하여 스크린테스트를 통해 고효율 제거 균주를 선별하였으며, 그 결과 Kl4가 kerosene 1,000 mg/L에서 6일간 가장 높은 제거율을 보였다. Kl4는 형태학적, 생리생화학적 테스트, 16S rDNA 및 지방산 분석을 통하여 Pseudomonas aeruginosa로 동정되었다. 위 균주를 사용하여 다양한 생장조건에서의 등유제거를 측정한 결과, 최적분해조건으로 초기 접종 균농도 1.0 g/L (w/v), 등유 1,000 mg/L, 온도 $30^{\circ}C$, pH 7의 조건이 선정되었다. 이 조건으로 K14에 대한 회분식 실험을 실시하였으며, 위 균주는72시간 동안 등유 1,000 mg/L를 78.3% 이상 제거하였다. 또한, 기질농도에 변화를 주어 실험한 결과 저농도의 등유 200 mg/L에 대하여 48시간 동안 95.8%, 고농도의 등유 5,000 mg/L에서 48시간 동안 42% 이상의 제거능을 보여주었다. 위 결과로 보아, K14에 의한 등유의 생물학적 처리는 유류에 오염된 지하수 및 토양에 적용하였을 시, 뛰어난 제거 효능을 보일 것으로 사료된다.

Keywords

References

  1. 오경택, 박귀환, 강창민, Kubo Motoki, 정선용. 2003. Pseudomonas aeruginosa F722로부터 유래된 biosurfactant를 이용한 등 경유 혼합물의 생분해율 향상. 한국생물공학회지 18, 529-535
  2. 환경부, 토양환경보전법 제 7, 8조, 2001개정
  3. ASTM (American society for Testing and Materials) Home Page, 2001. D396-01, Standard specification for fuel oils
  4. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Envint. 26, 413-416
  5. Baryshnikova, L.M., V.G. Grishchenkov, M.U. Arinbasarov, A.N. Shkidchenko, and L.M. Boronin. 1995. Biodegradation of oil products by individual degrading strains and their associations in liquid media. Appl. Biochem. Microbiol. 37, 463-468 https://doi.org/10.1023/A:1010285705353
  6. Geerdink, M.J., M.C.M. Loosdrecht, and K. Luyben. 1996. Biodegradability of diesel. Biodegradation 7, 73-81 https://doi.org/10.1007/BF00056560
  7. Gouda, M.K., S.H. Omar, Z.A. Chekroud, and H.M.N. Eldin. 2007. Bioremediation of kerosene I: A case study in liquid media. Chemosphere 69, 1807-1814 https://doi.org/10.1016/j.chemosphere.2007.05.079
  8. Hans-Jurgen, B., B.M.D. Ewald, and L. Werner. 1996. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematic. J. Biotechnol. 47, 3-38 https://doi.org/10.1016/0168-1656(96)01379-X
  9. Joanna, D.M., J.P. Frank, and E.C. Carl. 2004. Degradation of Benzo$[{\alpha}]$pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 70, 340-345 https://doi.org/10.1128/AEM.70.1.340-345.2004
  10. Kim, M.H. 1995. Microbial characterization for the assessment of the bioremediation potential on MGP soils. J. Korea Solid Waste Eng. 2, 223-230
  11. Kyong, L. and D.T. Gibson. 1996. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol. 62, 3101-3106
  12. Li, G., W. Huang, D.N. Lerner, and X. Zhang. 2000. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Res. 34, 3845-3853 https://doi.org/10.1016/S0043-1354(00)00134-2
  13. Margesin, R. and F. Schinner. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an Alpine Glacier skiing area. Appl. Environ. Microbiol, 63, 2660-2664
  14. Nocentini, M., D. Pinelli, and D. Fava. 2000. Bioremediation of a soil contaminated by hydrocarbon mixture: the residual concentration problem. Chemosphere 41, 1115-1123 https://doi.org/10.1016/S0045-6535(00)00057-6
  15. Ortega-Trejo, T.X. and R.G. Edyvean. 2004. Kerosene biodegradation by Pseudomonas fluorscens and Bacillus subtilis. In Poster in the 13th Int. Biodeter. Biodegr. Symposium, Madrid, Spain
  16. Edward, R.W. and J.C. Peter. 1992. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J. Bacterial. 52, 7542-7554
  17. Saratale, G., S. Kalme, S. Bhosale, and S. Govindwar. 2007. Biodegradation of kerosene by Aspergillus ochraceus NCIM-1146. J. Basic microbiol. 47, 400-405 https://doi.org/10.1002/jobm.200710337
  18. Solano-Serena, F., R. Marchal, J.M. Lebeault, and J.P. Vandeecasteele. 2000. Selection of microbial populations degrading recalcitrant hydrocarbons of gasoline by culture head space monitoring. Lett. Appl. Microbiol. 30, 19-22 https://doi.org/10.1046/j.1472-765x.2000.00631.x
  19. Song, H.G. and R. Bartha. 1990. Effects of jet fuel spills on the microbial community of soil. Appl. Environ. Microbiol. 56, 646-651
  20. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  21. Vargas, J.P., H.M.P. Varaldo, G.C. Calva, E.R. Leal, R.R. Vazquez, R.F. Cerrato, and F.E. Garcia. 2000. Nitrogen-fixing bacteria capable of utilising kerosene hydrocarbons as a sole carbon source. Water Sci. Technol. 42, 407-410
  22. Wongsa, P., M. Tanaka, A. Ueno, M. Hasanuzzaman, I. Yumoto, and H. Okuyama. 2004. Isolation and Characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr. Microbiol. 49, 415-422 https://doi.org/10.1007/s00284-004-4347-y