임플란트 주위 골 결손부의 이식재 크기에 따른 재생 효과 비교 연구

The comparative study - the regenerative effect depends on size of bone graft material in bone loss site around dental implant

  • 오흥균 (단국대학교 치과대학 치주과학교실) ;
  • 홍기석 (단국대학교 치과대학 치주과학교실) ;
  • 정진형 (단국대학교 치과대학 치주과학교실) ;
  • 임성빈 (단국대학교 치과대학 치주과학교실)
  • O, Hong-Kyun (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Hong, Ki-Seok (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Chung, Chin-Hyung (Department of Periodontology, School of Dentistry, Dan Kook University) ;
  • Yim, Sung-Bin (Department of Periodontology, School of Dentistry, Dan Kook University)
  • 발행 : 2008.09.30

초록

Purpose: The purpose of this study is to investigate on the regenerative capacity by using different size of graft materials around bony defect around implant. Material and Methods: Dental implant fixtures(Bio-TIS, Korea) were placed into the tibia of 8 rabbits. After placement of implant, artificial defects were created for each group, and the size of bone graft materials were used according to each designated group. 4 weeks after surgery, 8 rabbits were sacrificed. The histologic and histomorphometrical study were done for comparison of the regenerative capacity using $80-90{\mu}m$ and $200{\sim}1000{\mu}m$ size of grafting materials of OCS-$B^{(R)}$. Result: Matured bone formation was significantly increased more in Group E1($80-90{\mu}m$) than in Group E2($200{\sim}1000{\mu}m$). Group E1($80-90{\mu}m$) showed more significant augmentation in marginal length of graft material per unit area than Group E2($200{\sim}1000{\mu}m$). Group E1($80-90{\mu}m$) showed more interspace in graft material than Group E2($200{\sim}1000{\mu}m$). Control group showed no new bone formation around and inside of implanted fixture. Conclusion: Small grafting material size has great influence on bone regeneration.

키워드

참고문헌

  1. Vincente JC, Lopez-Arranz JS. Tissue regeneration in bone defects adjacent to endosseous implants: An experimental pilot study. Int J Periodontics Restorative Dent 2000;20: 41-49
  2. Buser D, Dula K, Belser U, Hirt H-P, Berthold H. Localized ridge augmentation using guided bone regeneration. I. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent 1993;13:29-45
  3. Buser D, Dula K, Belser U, Hirt H-P, Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: A clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg 1996;54:420-422 https://doi.org/10.1016/S0278-2391(96)90113-5
  4. Nevins M, Mellonig JT. The advantages of localized ridge augmentation prior to implant placement: A staged event. Int J Periodontics Restorative Dent 1994;14:97-111
  5. Fugazzotto PA, Shanaman R, Manos T, Shectman R. Guided Bone regeneration around titanium implants: Report of the treatment of 1,503 sites with clinical reentries. Int J Periodontics Restorative Dent 1997;17:292-299
  6. Melcher AH, Accursi GE. Osteogenic capacity of periosteal and osteo-periosteal flaps elevated from parietal bone of the rat. Arch Oral Biol 1971;16:573-580 https://doi.org/10.1016/0003-9969(71)90060-4
  7. Gottlow J, Nyman S, Karring T, Lindhe J. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 1984;11:494-503 https://doi.org/10.1111/j.1600-051X.1984.tb00901.x
  8. Dahlin C, Alberius P, Lindhe A. Osteopromotion for cranioplasty. An experimental study in rats using a membrane technique. J Neurosurg 1991;74:487-491 https://doi.org/10.3171/jns.1991.74.3.0487
  9. Dahlin C, Andersson L, Lindhe A. Bone augmentation at fenestrated implants by an osteopromotive membranetechnique. A controlled clinical study. Clin Oral Implants Res 1991;2:159-165 https://doi.org/10.1034/j.1600-0501.1991.020401.x
  10. Dahlin C, Sennerby L, LekholmU, Linde A, Nyman S. Generation of new bone around titanium implants usinga membrane technique: An experimental study in rabbits. Int J Oral Maxillofac implants 1989;4:19-25
  11. Becker W, Becker BE. Guided tissue regeneration for implants placed into extraction sockets and for implant dehiscences: Surgical techniques and case reports. Int J Periodontics Restorative Dent 1990;10:377-391
  12. Becker W, Becker BE, Handlesman M et al. Bone formation at dehisced dental implant sites treated with implant augmentation material: A pilot study in dogs. Int J Periodont Rest Dent 1990;10:93-101
  13. Lazzara R. Immediate implant placement into extraction sites: Surgical and restorative advantages. Int J Periodontics Restorative Dent 1989;9:333-343
  14. Becker W, Lynch SE, Lekholm U et al. A comparison of three methods for promoting bone formation around implant placed into immediate extraction sockets: e-PTFE membrane alone or with either PDGF and IGF-1 or DFDB. J Periodontol 1992;63:929-940 https://doi.org/10.1902/jop.1992.63.11.929
  15. Schallhorn RG, Hiatt WH, Boyce W. Iliac transplants in periodontal therapy. J Periodontol 1970;41(10):566-580 https://doi.org/10.1902/jop.1970.41.41.566
  16. Schallhorn RG, Hiatt WH. Human allografts of iliac cancellous bone and marrow in periodontal osseous defects I. Rationale and methodology. J Periodontol 1971;42(10):642-647 https://doi.org/10.1902/jop.1971.42.10.642
  17. Uchida A, Nade SM, McCartney ER, Ching W. The use of ceramics for bone replacement. A comparative study of three defferent porous ceramics. J Bone Joint Surg Br 1984;66:269-275 https://doi.org/10.2106/00004623-198466020-00014
  18. Chang RC, Kao AS. Biomechanical and histological studies of particulate hydroxyapatite implanted in femur bone defects of adult dogs. Int J Oral Maxillofac Surg 2000;29: 54-56 https://doi.org/10.1016/S0901-5027(00)80126-5
  19. Strub JR, Gaberthuel TW, Firestone AR. Comparison of tricalcium phosphate and frozen allogenic bone implants in man. J Periodontol 1979;50:624-629 https://doi.org/10.1902/jop.1979.50.12.624
  20. Uchida A, Nade SM, McCartney ER, Ching W. Growth of bone marrow cells on porous ceramics in vitro. J Biomed Mater Res 1987;21:1-10 https://doi.org/10.1002/jbm.820210106
  21. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25:571-578
  22. Sculean A, Chiantella GC, Windisch P et al. Healing of intra-bony defects following treatment with a composite bovine-derived xenograft(Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). J Clin Periodontal 2005;32:720-724 https://doi.org/10.1111/j.1600-051X.2005.00758.x
  23. Wenz B, Oesch O, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 2001;22: 1599-1606 https://doi.org/10.1016/S0142-9612(00)00312-4
  24. Clokie CML, Sandor GKB. Bone. present and future. In: Babbush CA. Dental implants: the art and science. Philadelphia: W.B. Sanduers Company; 2001;70
  25. Froum SJ, Tarnow DP, Wallace SS, Rohrer MD, Cho SC. Sinus floor elevation using anorganic bovine bone matrix (OsteoGraf/N) with and without autogenous bone: a clinical, histologic, radiographic, and histomorphometric analysis- Part 2 of an ongoing prospective study. Int J Periodontics Restorative Dent 1998;18:528-543
  26. John HD, Wenz B. Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation. Int J Oral Maxillofac Implants 2004;19:199-207
  27. Landi L, Pretel RW Jr, Hakimi NM, Setayesh R. Maxillary sinus floor elevation using a combination of DFDBA and bovine-derived porous hydroxyapatite: a preliminary histologic and histomorphometric report. Int J Periodontics Restorative Dent 2000;20:574-583
  28. Aiorana C, Redemagni M, Rabagliati M, Salina S. Treatment of maxillary ridge resorption by sinus augmentation with iliac cancellous bone, anorganic bovine bone, and endosseous implants: a clinical and histologic report. Int J Oral Maxillofac Implants 2000;15:873-878
  29. Mellonig JT. Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent. 2000;20: 19-29
  30. Hallman M, Sennerby L, Zetterqvist L, Lundgren S. A 3-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with a 80:20 mixture of deproteinized bovine bone and autogenous bone Clinical, radiographic and resonance frequency analysis. Int J Oral Maxillofac Surg 2005;34:273-280 https://doi.org/10.1016/j.ijom.2004.09.009
  31. Norton MR, Odell EW, Thompson ID, Cook RJ. Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implants Res 2003;14:775-783 https://doi.org/10.1046/j.0905-7161.2003.00952.x
  32. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999;14:835-840
  33. Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res 2003;14:369-372 https://doi.org/10.1034/j.1600-0501.2003.140316.x