Comparison of Diglyceride, Conjugated Linoleic Acid, and Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Preadipocytes

  • Jeong, Jae-Hwang (College of Liberal Arts, Seowon University) ;
  • Lee, Sang-Hwa (Department of Food and Nutrition, Seowon University) ;
  • Hue, Jin-Joo (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Yea-Eun (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Young-Ho (Ilshinwells Co., Ltd) ;
  • Hong, Soon-Ki (Ilshinwells Co., Ltd) ;
  • Jeong, Seong-Woon (Ilshinwells Co., Ltd) ;
  • Nam, Sang-Yoon (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Yun, Young-Won (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Beom-Jun (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • Published : 2007.09.30

Abstract

Conjugated linoleic acid (CLA) reduces fat deposition in several mammalian species. The proposed mechanisms for this effect are reduced preadipocyte proliferation and differentiation. The objective of this study was to investigate the inhibitory effects of diglyceride (DG), CLA, DG-CLA of proliferation and differentiation of 3T3-L1 preadipocytes. Cell viability was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was measured by Oil red O staining. The proliferation of preconfluent 3T3-L1 cells by treatments of DG, CLA, and DG-CLA was reduced in a dose-dependent manner. CLA among them was the most effective in reduction of viable cells with increasing concentrations. Treatments of the DG, CLA, and DG-CLA at the concentration of $100{\cdot}\ddot{I}g/ml$ for 48h significantly inhibited differentiation of 3T3-L1 cells (p<0.05). In addition. cytoplasmic lipid accumulation during differentiation of the 3T3-L1 preadipocytes was also inhibited by treatments of the test solutions. DG-CLA was the most effective in the inhibition of differentiation and lipid accumulation in 3T3-L1 cells. These results indicate that the DG including CLA as fatty acids is more effective for anti-obesity than DG or CLA alone and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

Conjugated linoleic acid (CLA)는 전지방세포의 증식 및 분화를 억제시키므로서 포유동물에서 지방의 축적을 감소시키는 것으로 알려져 있다. 논 연구의 목적은 diglyceride(DG), CLA, 및 DG-CLA가 전지방세포의 증식 및 분화를 억제시키는지를 알아보고자, 세포생존측정, glycerol-3-phosphate dehydrogenase (GPDH) 활성측정, 지방축적에 대한 Oil red O 염색을 실시하였다. DG, CLA, 및 DG-CLA의 처치는 전지방세포의 증식을 농도 의존적으로 감소시켰으며, 그러한 효과는 CLA에서 가장 강하게 나타났다. 이들 시험물질의 $100 {\mu}g/ml$ 농도에서 DG, CLA, DG-CLA는 유의적으로 GPDH의 활성을 낮추었으며(p<0.05), 이러한 결과는 전지방세포의 분화를 억제하는 것을 의미한다. 더불어 이들 시험물질은 전지방세포의 분화과정 중에 지방축적을 효과적으로 억제시켰다. 더욱이 DG-CLA가 DG 혹은 CLA보다 분화 및 지방축적에 대해 더 강한 효과를 보였다. 이러한 결과로부터 DG-CLA의 섭취는 사람에서 체중조절의 유용한 효과를 얻을 수 있을 것이다.

Keywords

References

  1. DeLany, J.P., Blohm, F., Truett, A.A., Scimeca, J.A., and West, D.B.: Conjugated linolenic acid rapidly reduces body fat content in mice without affecting energy intake. Am. J. Physiol., 276, R1172-R1179 (1999)
  2. Ostrowska, E., Muralitharan, M., Cross, R.F., Bauman, D.E., and Dunshea, F.R.: Dietry cinjugated linolenic acids increase lean tissue and decrease fat deposition in growing pigs. J. Nutr., 129, 2037-2042 (1999) https://doi.org/10.1093/jn/129.11.2037
  3. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L., and Pariza, M.W.: Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anti-carcinogens. J. Food Comp. Anal., 5, 185-197 (1992) https://doi.org/10.1016/0889-1575(92)90037-K
  4. Satory, D.L., and Smith, S.B.: Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. J. Nutr., 129, 92-97 (1999)
  5. Ip, C., Chin, S.F., Scimeca, J.A., and Pariza, M.W.: Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res., 51, 6118-6124 (1991)
  6. Parodi, P.W.: Cows'milk fat components as potential anticarcinogenic agents. J. Nutr., 127, 1055-1060 (1997)
  7. Lin, H., Boylston, T.D., Chang, M.J., Luedecke, L.O., and Shultz, T.D.: Survey of the conjugated linoleic acid contents of dairy products. J. Dairy Sci., 78, 2358-2365 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76863-1
  8. Park, Y., Albright, K.J., Storkson, J.M., Liu, W., Cook, M., and Pariza, M.W.: Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids, 34, 243-248 (1999a) https://doi.org/10.1007/s11745-999-0359-7
  9. Ha, Y.L., Storkson, J., and Pasiza, M.W.: Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res., 50, 1097-1101 (1990)
  10. Alfin-Stater, R.B., and Aftergood, L.: Essential fatty acids reinvestigated. Physiol. Rev., 48,758 (1968) https://doi.org/10.1152/physrev.1968.48.4.758
  11. Pariza, M.W., Park, Y., and Cook, M.: The biologically active isomers of conjugated linolenic acid. Prog. Lipid. Res., 40, 283-298 (2001) https://doi.org/10.1016/S0163-7827(01)00008-X
  12. Banni, S., Carta, G., Angioni, E., Murru, E., Scanu, P., Melis, MP., Bauman, D.E., Fischer, S.M., and Clement, I.p.: Distribution of conjugated linolenic acid and metabolites in different lipid fractions in the liver. J. Lipid Res., 42, 1056-1061 (2001)
  13. Park, Y., Storkson, J.M., Albright, K.J., Lie, W., and Pariza, M.W.: Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids, 34, 235-241 (1999b) https://doi.org/10.1007/s11745-999-0358-8
  14. Deckere, D.e., Van, E.A.M., Amelsvoort, J.M.M., McNeill, G.P., and P, Jones.: Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br. J. Nutr., 82, 309-317 (1999)
  15. Granlund, L., Pedersen, J.I., and Nebb, H.I.: Impaired lipid accumulation by trans10, cis12 CLA during adipocyte differentiation is dependent on timing and length of treatment. Biochem. Biophysic. Acta, 1687, 11-22 (2005) https://doi.org/10.1016/j.bbalip.2004.08.018
  16. Murata, M., Hara, K., and Ide, T.: Alteration by diacylglycerols of the transport and fatty acid composition of lymph chylomicrons in rats. Biosci. Biotechnol. Biochem., 58, 1416-1419 (1994) https://doi.org/10.1271/bbb.58.1416
  17. Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., and Itakura, H.: Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol. Lipids, 36, 379-382 (2001) https://doi.org/10.1007/s11745-001-0731-7
  18. Takatoshi, M., Masafumi, A., Takuya, W., Tadashi, H., and Ichiro, T.: Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. Lipid Res., 43, 1312-1319. (2002)
  19. Nagao, T.H., Watanabe, N.G., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H.: Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in doubleblind controlled trial. J. Nutr., 130, 792-797 (2000)
  20. Murase, T., Mizuno, T., Omachi, T., Onizawa, K., Komine, Y., Kondo, H., Hase, T., and Tokimitsu, I.: Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. J. Lipid Res., 42, 372-378 (2001)
  21. MacDougald, O.M., and Lane, M.D.: Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem., 64, 345-353 (1995) https://doi.org/10.1146/annurev.bi.64.070195.002021
  22. Gregoire, F.M., Smas, C.M., and Sul, H.S.: Understanding adipocyte differentiation. Physiol. Rev., 78, 783-809 (1998) https://doi.org/10.1152/physrev.1998.78.3.783
  23. Lee, K.N., Kritchevsky, D., and Pariza, M.W.: Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis, 108, 19-25. (1994) https://doi.org/10.1016/0021-9150(94)90034-5
  24. Miller, C., Park, Y., Pariza, M., and Cook, M.: Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commun., 198, 1107-1112 (1994) https://doi.org/10.1006/bbrc.1994.1157
  25. Takatoshi, M., Tomohito, M., Toshiko, O., Kouji, O., Yumiko, K., Hidehiko, K., Tadashi, H., and Ichiro, T.: Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. Lipid Res., 42, 372-378 (2001)
  26. Terpstra, A.H.M., Javadi, M., Beynen, A.C., Kocsis, S., Lankhorst, A.E., Lemmens, A.G., and Mohede, I.C.M.: Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice. J. Nutr., 133, 3181-3186 (2003)
  27. Brodie, A.E., Manning, V.A., Ferguson, K.R., Jewell, D.E., and Hu, C.Y.: Conjugated linoleic acid inhibits differentiation of pre- and post-confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent $cells^{123}$. J. Nutr., 129, 602-606 (1999)
  28. Kang, K., Liu, W., Albright, K.J., Park, Y., and Pariza, M.W.: trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem. Biophys. Res. Commun., 303, 795-759 (2003) https://doi.org/10.1016/S0006-291X(03)00413-3
  29. Liu, L.H., Wang, X.K., Hu, Y.D., Kang, J.L., Wang, L.L., and Li, S.: Effets of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells. Acta. Pharmacol. Sin., 25, 1052-1057 (2004)
  30. Kim, J.Y., Nolte, I.A., Hansen, P., Han, D.H., Ferguson, K., Thompson, P.A., and Holloszy, J.O.: High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279, R2057-2065 (2000) https://doi.org/10.1152/ajpregu.2000.279.6.R2057
  31. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W.: Effect of conjugated linoleic acid on body composition in mice. Lipids, 32, 853-858 (1997) https://doi.org/10.1007/s11745-997-0109-x
  32. West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J.: Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am. J. Physiol., 275, R667-R672 (1998)
  33. Tsuboyama-Kasaoka, N., Takahashi, M., Tanemura, K., Kim, H.J., Tang,e T., Okuyama, H., Kasai, M., Ikemoto, S., and, Ezaki, O.: Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes, 49, 1534-1542 (2000) https://doi.org/10.2337/diabetes.49.9.1534
  34. Miner, J.L., Cederberg, C.A., Nielsen, M.K., Chen, X., and Baile, C.A.: Conjugated linoleic acid (CLA), body fat, and apoptosis. Obes. Res., 9, 129-134 (2001) https://doi.org/10.1038/oby.2001.16
  35. Ohnuki, K., Haramizu, S., Ishihara, K., and Fushiki, T.: Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci. Biotechnol. Biochem., 65, 2200-2204 (2001) https://doi.org/10.1271/bbb.65.2200
  36. Peters, J.M., Park, Y., Gonzalez, F.J., and Pariza, M.W.: Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor a-null mice. Biochim. Biophys. Acta, 1533, 233-242 (2001) https://doi.org/10.1016/S1388-1981(01)00155-X
  37. Burant, C.F., Sreenan, S., Hirano, K., Tai, TA., Lohmiller, J., Lukens, J., Davidson, N.O., Ross, S., and Graves, R.A.: Troglitazone action is independent of adipose tissue. J. Clin. Invest., 100, 2900-2908 (1997) https://doi.org/10.1172/JCI119839