Bactericidal Effect of Bacteriocin of Lactobacillus plantarum K11 Isolated from Dongchimi on Escherichia coli O157

  • Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University) ;
  • Im, Dong-Soon (College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2007.09.30

Abstract

Among 68 strains of lactic acid bacteria (LAB) isolated from Dongchimi, a strain K11 was selected due to its bactericidal activity against Escherichia coli O157 The strain K11 was identified as Lactobacillus plantarum, based on physiological and biochemical characteristics. In the late exponential phase, La. plantarum K11 showed maximum bacteriocin activity (12,800 BU/mL) and maintained until the early stationary phase. The bacteriocin activity was completely inactivated by all the proteolytic enzymes such as pepsin, protease, proteinase K, papain, chymotrypsin, and trypsin, but the activity was not affected by catalase, a-amylase, lysozyme, and lipase, suggesting proteinaceous nature of the bacteriocin. Additionally, this activity was not affected in the pH range from 3.0 to 9.0 and under storage conditions like 30 days at -20,4, or $25^{\circ}C$. Although the bacteriocin activity was absolutely lost after 15 min treatment at 121, it was relatively stable at $70^{\circ}C$ for 60 min or $100^{\circ}C$ for 30 min. The activity was disappeared by treatment with acetone, benzene, ethanol, or methanol, but it was not affected by treatment with chloroform or hexane. The antibacterial activity of the bacteriocin was good against some LAB including Lactobacillus spp., Enterococcus spp., and Streptococcus spp., but not against food-borne pathogens such as Bacillus spp., Listeria spp., and Staphylococcus spp. as well as yeasts and molds. Especially, some intestinal bacteria such as Enterobacter aerogenes and E. coli were significantly affected by the bacteriocin of La, plantarum K11. Furthermore, the addition of 640 BU/mL resulted in the complete clearance of E. coli O157 after 10 hr.

동치미로부터 분리한 유산균 (68 균주) 중 Escherichia coli O157에 대한 항균 효과를 나타내는 균주는 Lactobacillus plantarum K11로 동정되었다. 분리균주 La. piantarum K11이 생산한 박테리오신의 항균 활성은 대수증식기 후반부에 12,800 BU/mL로 최대 활성에 이르렀다. 항균 활성은 pepsin, protease, proteinase K, papain, chymotrypsin 및 trypsin 처리에 의해 완전히 소실되었으나, catalase, ${\alpha}-amylase$, lysozyme 및 lipase에 의해서는 영향을 받지 않았으므로 단백질성 물질임을 확인하였다. 게다가, 이 활성은 pH 3.0-9.0의 조건하에서나 -20, 4 및 $25^{\circ}C$에서 30일간의 저장 동안에도 안정하였다. 또한 $100^{\circ}C$에서 30분간 가열처리에도 비교적 안정한 편이었고, chloroform이나 hexane 처리에도 활성에 변함이 없었다. 분리 균주의 박테리오신은 Bacillus spp., Listeria spp. 및 Staphylococcus spp. 등의 일부 식중독균의 억제효과는 나타나지 않았으나, Enterobacter aerogenes와 E. coli 등의 장내세균의 억제에는 효과적이었으며, 특히 640 BU/mL의 박테리오신 처리에 의해서 10시간 배양만에 E. coli O157이 완전하게 사멸되었다.

Keywords

References

  1. Padhye, N.V. and Doyle, M.P.: Escherichia coli O157:H7: epidemiology, pathogenesis, and methods for detection in food. J. Food. Protect., 55, 555-565 (1992) https://doi.org/10.4315/0362-028X-55.7.555
  2. Frenzen, P.D., Drake, A. and Angulo, F.J.: Economic cost of illness due to Escherichia coli O157 infections in the United States. J. Food Protect., 68, 2623-2630 (2005) https://doi.org/10.4315/0362-028X-68.12.2623
  3. Shin, R., Suzuki, M. and Morishita, Y.: Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J. Med. Microbiol., 51, 201-206 (2002) https://doi.org/10.1099/0022-1317-51-3-201
  4. Gupta, S. and Ravishankar, S.: A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric paste against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathoq. Dis., 2, 330-340 (2005) https://doi.org/10.1089/fpd.2005.2.330
  5. Rhee, M.S., Lee, S.Y., Dougherty, R.H. and Kang, D.H.: Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar typhimurium. Appl. Environ. Microb., 69, 2959-2963 (2003) https://doi.org/10.1128/AEM.69.5.2959-2963.2003
  6. Zhao, T., Doyle, M.P., Harmon, B.G., Brown, C.A., Mueller, P.O.E. and Parks, A.H.: Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J. Clin. Microbiol., 36, 641-647 (1998)
  7. Ogawa, M., Shimizu, K., Nomoto, K., Tanaka, R., Hamabata, T., Yamasaki, S., Takeda, T. and Takeda, Y.: Inhibition of in vitro growth of shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillusstrains due to production of lactic acid. Int. J. Food Microbiol., 68, 135-140 (2001) https://doi.org/10.1016/S0168-1605(01)00465-2
  8. Rodriguez, E., Arques, J.L., Nunez, M., Gaya, P. and Medina, M.: Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Appl. Environ. Microb., 71, 3399-3404 (2005) https://doi.org/10.1128/AEM.71.7.3399-3404.2005
  9. Schillinger, U., Geisen, R. and Holzapfel, W.H.: Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Tech., 7, 158-164 (1996) https://doi.org/10.1016/0924-2244(96)81256-8
  10. Abee, T., Krockel, L. and Hill, C.: Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food. Microbiol., 28, 169-185 (1995) https://doi.org/10.1016/0168-1605(95)00055-0
  11. Cleveland, J., Montville, T.J. Nes, I.F. and Chikindas, M.L.: Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 71, 1-20 (2001). imag https://doi.org/10.1016/S0168-1605(01)00560-8
  12. Leistner, L.: Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol., 55, 181-186 (2000) https://doi.org/10.1016/S0168-1605(00)00161-6
  13. Ryan, M.P., Meaney, W.J., Ross, R.P. and Hill, C.: Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl. Environ. Microb., 64, 2287-2290 (1998)
  14. Holo, H., Nilssen, O. and Nes. I.F.: Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol., 173, 3879-3887 (1991) https://doi.org/10.1128/jb.173.12.3879-3887.1991
  15. Rogosa, M.: Lactobacillus. p. 585. In: Bergey's Manual of Determinative Bacteriology. Buchanan, R.E. and N.E. Gibbons (eds). Williams & Wilkins, Baltimore, MD, USA (1986)
  16. Choi, O.K., Kim, Y.S., Cho, G.S. and Sung, C.K.: Screening for antimicrobial activity from Korean plants. Kor. J. Food Nutr., 15, 300-306 (2002)
  17. Ouwehand, A.C.: Antimicrobial components from lactic acid bacteria. pp. 139-154. Lactic acid bacteria. Salminen, S. and A. von Wright (eds). Marcel Dekker, Inc., NY, USA (1998)
  18. Gonzalez, B., Arca, P., Mayo, B. and Suarez, J.E.: Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of diary origin. Appl. Environ. Microb., 60, 2158-2163 (1994)
  19. Franz, C.M.A.P., Toit, M.D., Olasupo, N.A., Schillinger, U. and Holzapfel, W.H.: Plantaricin D, a bacteriocin produced by Lactobacillus planatrum BFE 905 from ready-to-eat salad. Lett. Appl. Microbiol., 26, 231-235 (1998) https://doi.org/10.1046/j.1472-765X.1998.00332.x
  20. Nissen-Meyer, J., Larsen, A.G., Sletten, K., Daeschel, M. and Nes, I.F.: Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J. Gen. Microbiol., 139, 1973-1978 (1993) https://doi.org/10.1099/00221287-139-9-1973
  21. West, C.A. and Warner, P.J.: Plantaricin B, a bacteriocin produced by Lactobacillus plantarumNCDO 1193. FEMS Microbiol., 49, 163-165 (1988) https://doi.org/10.1016/0378-1097(88)90452-1
  22. Fricourt, B.V., Barefoot, S.F., Testin, R.F. and Hayasaka, S.S.: Detection and activity of plantaricin F an antibacterial substance from Lactobacillus plantarum BF001 isolated from processed channel catfish. J. Food Protect., 57, 698-702 (1994) https://doi.org/10.4315/0362-028X-57.8.698
  23. Jimenez-Diaz, R., Rios-Sanchez, R.M,. Desmazeaud, M., Ruiz-Barba, J.L. and Piard, J.C.: Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microb., 59, 1416-1424 (1993)
  24. Ennahar, S., Assobhel, O. and Hasselmann, C.: Inhibition of Listeria monocytogenesin a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J. Food Protect., 61, 186-191 (1998) https://doi.org/10.4315/0362-028X-61.2.186
  25. Todorov, S., Onno, B., Sorokine, O., Chobert, J.M., Ivanova, I. and Dousset, X.: Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int. J. Food Microbiol., 48, 167-177 (1999) https://doi.org/10.1016/S0168-1605(99)00048-3
  26. Andersson, R.: Inhibition of Stapylococcus aureus and spheroplasts of Gram-negative bacteria by an antagonistic compound produced by a strain of Lactobacillus plantarum. Int. J. Food Microbiol., 3, 149-160 (1986) https://doi.org/10.1016/0168-1605(86)90010-3
  27. Kalchayanand, N., Hanlin, M.B. and Ray, B.: Sublethal injury makes grom-negative and resistant gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Lett. Appl. Microbiol., 15, 239-243 (1992) https://doi.org/10.1111/j.1472-765X.1992.tb00773.x
  28. Rodriguez, E., Calzada, J., Arques, J.L., Rodriguez, J.M., Nunez, M. and Medina, M.: Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. Int. Dairy J., 15, 51-57 (2005) https://doi.org/10.1016/j.idairyj.2004.05.004
  29. Yuste J. and Fung D.Y.: Inactivation of Salmonella typhimurium and Escherichia coli O157:H7 in apple juice by a combination of nisin and cinnamon. J. Food Prot., 67, 371-377 (2004) https://doi.org/10.4315/0362-028X-67.2.371
  30. Suma, K., Misra, M.C. and Varadaraj, M.C.: Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int. J. Food Microbiol., 40, 17-25 (1998) https://doi.org/10.1016/S0168-1605(98)00010-5
  31. Sabia, C., Manicardi, G., Messi, P., de Niederhausen, S. and Bondi, M.: Enterocin 416K1, and antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int. J. Food Microbiol., 75, 163-170 (2002) https://doi.org/10.1016/S0168-1605(01)00741-3
  32. Tagg, J.R. and Wannamaker, L.W.: Streptococcin A-FF22: Nisin-like antibiotic substance produced by a group A Streptococcus. Antimicrob. Agents Ch., 14, 36-39 (1978)
  33. Kim, S.K., Lee, E.J., Park, K.Y. and Jun, H.K.: Bacteriocin produced by Lactobacillus curvatus SE1 isolated from Kimchi. J. Microbiol. Biotechn., 8, 588-594 (1998)
  34. Jung, M.Y. and Paik, H.D.: Identification and partial characterization of lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from commercial Swiss cheese products. Food Sci. Biotechnol., 9, 116-123 (2000)
  35. Toit, M. D., Franz, C.M.A.P., Dicks, L.M.T. and Holzapfel, W.H.: Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolatedfrom pig faeces. J. Appl. Microbiol., 88, 482-494 (2000) https://doi.org/10.1046/j.1365-2672.2000.00986.x
  36. Todorov, S.D. and Dicks, L.M.T.: Lactobacillus plantarumisolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme Microb Tech., 36, 318-326 (2005) https://doi.org/10.1016/j.enzmictec.2004.09.009
  37. Kim, S.H., Lee, J.G. and Lee, M.S.: The effect of bacteriocin produced by Lactobacillus plantarum on the growth of Listeria monocytogenes. J. Fish Sci. Tech., 1, 35-41 (1998)
  38. Enan, G., El-Essawy, A.A., Uyttendaele, M. and Debevere, J.: Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausasge: characterization, production and bactericidal action of plantaricin UG1. Int. J. Food Microbiol., 30, 189-215 (1996) https://doi.org/10.1016/0168-1605(96)00947-6
  39. Ogunbanwo, S.T., Sanni, A.I. and Onilude, A.A.: Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. Afr. J. Biotechnol., 2, 219-227 (2003) https://doi.org/10.5897/AJB2003.000-1045
  40. Van Reenen, C.A., Dicks, L.M. and Chikindas, M.L.: Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J. Appl. Microbiol., 84, 1131-1137 (1998) https://doi.org/10.1046/j.1365-2672.1998.00451.x
  41. Lash, B.W., Mysliwiec, T.H. and Gourama, H.: Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014). Food Microbiol., 22, 199-240 (2005) https://doi.org/10.1016/j.fm.2004.03.006
  42. Nadiwada, L.S., Schamberger, G.P., Schafer, H.W. and Diez-Gonzalez, F.: Characterization of an E2-type colicin and its application to treat alfalfa seeds to reduce Escherichia coli O157:H7. Int. J. Food Microbiol., 93, 267-279 (2004) https://doi.org/10.1016/j.ijfoodmicro.2003.11.009
  43. Maisnier-Patin, S., Forni, E. and Richard, J.: Purification, partial characterizationand mode of action of enterococcin EFS2, an antilisterial bacteriocin produced by a strain of Enterococcus faecalis isolated from a cheese. Int. J. Food Microbiol., 30, 255-270 (1996) https://doi.org/10.1016/0168-1605(96)00950-6
  44. sLoessner, M., Guenther, S., Steffan, S. and Scherer, S.: A pediocin-producing Lactobacillus plantarumstrain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl. Environ. Microb., 69, 1854-1857 (2003) https://doi.org/10.1128/AEM.69.3.1854-1857.2003