DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured 2MoSi2-SiC by Pulsed Current Activated Combustion Synthesis

펄스 전류 활성 연소합성에 의한 나노구조의 2MoSi2-SIC제조 및 기계적 성질

  • Shon, In-Jin (Department of Advanced Materials Engineering, The Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Kim, Dong-Ki (Department of Advanced Materials Engineering, The Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Jeong, In-Kyoon (Department of Advanced Materials Engineering, The Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Ko, In-Yong (Department of Advanced Materials Engineering, The Research Center of Advanced Materials Development, Chonbuk National University)
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구 쎈터) ;
  • 김동기 (전북대학교 신소재공학부 신소재 개발 연구 쎈터) ;
  • 정인균 (전북대학교 신소재공학부 신소재 개발 연구 쎈터) ;
  • 도정만 (한국과학기술 연구원 기능금속 연구쎈터) ;
  • 윤진국 (한국과학기술 연구원 기능금속 연구쎈터) ;
  • 고인용 (전북대학교 신소재공학부 신소재 개발 연구 쎈터)
  • Published : 2007.08.28

Abstract

Dense nanostructured $2MoSi_{2}-SiC$ composites were synthesized by the pulsed current activated combustion synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of $Mo_{2}C$ and 5Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $2MoSi_{2}-SiC$ with relative density of up to 96% was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average grain size of $MoSi_{2}$ and SiC were about 120 nm and 90 nm, respectively. The hardness and fracture toughness values obtained were 1350 $kg/mm^{2}$ and 4 $MPa{\cdot}m^{1/2}$, respectively.

Keywords

References

  1. J. Milne: Instant Heat, Kinetic Metals Inc., Derby, CT (1985)
  2. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens: Thermal Conductivity, P.G. IFI/Plenum, New York (1970) 1324
  3. Gorhard Sauthoff, Intermetallics, VCH Publishers, New York (1995) 115
  4. Y. Ohya, M. J. Hoffinann and G. Petzow: J. Mater. Sci. Lett., 12 (1993) 149 https://doi.org/10.1007/BF00819942
  5. B. W. Lin and T. Iseki: Br. Ceram. Trans. J., 91 (1992) 1
  6. Y. Ohya, M. J. Hoffinann and G. Petzow: J. Am. Ceram. Soc., 75 (1992) 2479 https://doi.org/10.1111/j.1151-2916.1992.tb05600.x
  7. S. K. Bhaumik, C. Divakar, A. K. Singh and G S. Upadhyaya: Mater. Sci. Eng., A 279 (2000) 275 https://doi.org/10.1016/S0921-5093(99)00217-8
  8. D. K. Jang and R. Abbaschian: Kor. J. Mater. Res., 9 (1999) 92
  9. Z. H. Houan, C. H. Pin, W. Mengjun, and L. Xinyu: Rare Metals; 21 (2002) 304
  10. R. Mitra, Y. R. Mahajan, N. E. Prasad, W. A. Chiou and C. Ganguly: Key. Eng. Mater., 108-110 (1995) 11 https://doi.org/10.4028/www.scientific.net/KEM.108-110.11
  11. P. J. Meschter: Metall. Trans., A. 23 (1992) 1763 https://doi.org/10.1007/BF02804369
  12. J. K. Yoon, K. H. Lee, G. H. Kim, J. H. Han, J. M. Doh and K. T. Hong: Mater. Trans., 45 (2004) 2435 https://doi.org/10.2320/matertrans.45.2435
  13. K. Kurokawa, M. Ube, Hideaki Takahashi and Heishichiro Takahashi: J. Phys. IV France (2000) 10
  14. H. Gleiter: Nanostruct. Mater., 6 (1995) 3 https://doi.org/10.1016/0965-9773(95)00025-9
  15. J. Karch, R. Birringer and H. Gleiter: Nature, 330 (1987) 556 https://doi.org/10.1038/330556a0
  16. A. M. George, J. Iniguez and L. Bellaiche: Nature, 413 (2001) 54 https://doi.org/10.1038/35092530
  17. D. Hreniak and W. Strek: J. Alloys compd., 341 (2002) 183 https://doi.org/10.1016/S0925-8388(02)00067-1
  18. C. Xu, J. Tamaki, N. Miura and N. Yamazoe: Sens. Actuators B, 3 (1991) 147 https://doi.org/10.1016/0925-4005(91)80207-Z
  19. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez. D. Garcia and B. Alascio: J. Magn. Mater., 241 (2002) 207 https://doi.org/10.1016/S0304-8853(02)00006-9
  20. E. S. Ahn, N. J. Gleason, A. Nakahira amd J. Y. Ying: Nano Lett., 1 (2001) 149 https://doi.org/10.1021/nl0055299
  21. J. Fang and Z. W. Eason: Int. J. of Refractory Met. & Hard Mater., 13 (1995) 297 https://doi.org/10.1016/0263-4368(95)92675-A
  22. A. I. Y. Tok, I. H. Luo and F. Y. C. Boey: Matrials Science and Engineering A, 383 (2004) 234 https://doi.org/10.1016/j.msea.2004.05.071
  23. I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon and K. T. Hong: Mater. Sci. For., 534 (2007) 525 https://doi.org/10.4028/www.scientific.net/MSF.534-536.525
  24. M. Sommer, W. D. Schubert, E. Zobetz and P. Warbichler: Int. J. of Refractory Met. & Hard Mater., 20 (2002) 41 https://doi.org/10.1016/S0263-4368(01)00069-5
  25. I. J. Shon, H. K. Park, H. C. Kim, J. K. Yoon, K. T. Hong and I. Y. Ko: Scripta Materialia, 56 (2007) 665 https://doi.org/10.1016/j.scriptamat.2006.12.042
  26. F. L. Zhang, C. Y. Wang and M. Zhu: Nanostructured WC/Co composite powder prepared by high energy ball milling. Scripta Mater, 49 (2003) 1123 https://doi.org/10.1016/j.scriptamat.2003.08.009
  27. G.R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall: J. Am. Ceram. Soc., 64 (1981) 533 https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  28. D. G Morris, M. Leboeuf and M. A. Morris: Mater. Sci. Eng., A 251 (1988) 262 https://doi.org/10.1016/S0921-5093(98)00517-6