Spectra of nonlinear shallow water waves

비선형 천해파의 스펙트라

  • Zahibo, Narcisse (Physics Department, University of Antilles Guyane) ;
  • Didenkulova, Ira (Applied Mathematics Department, State Technical University, and Department of Nonlinear Geophysical Processes, Institute of Applied Physics) ;
  • Pelinovsky, Efim (Applied Mathematics Department, State Technical University, and Department of Nonlinear Geophysical Processes, Institute of Applied Physics)
  • Published : 2007.08.31

Abstract

The process of the nonlinear shallow water wave transformation in a basin of a constant depth is studied. Characteristics of the first breaking of the wave are analyzed in details. The Fourier spectrum and steepness of the nonlinear wave are calculated. It is shown that the spectral amplitudes can be expressed using the wave front steepness, which allows the practical estimations.

본 논문에서는 수심이 일정한 수조에서의 비선형 천해파의 변형 과정에 대한 연구를 수행하였다. 파랑의 최초 쇄파에 대한 특성을 자세히 분석하고, 비선형파의 경사 및 퓨리에 스펙트럼을 산정하였다. 분석결과 스펙트럼의 진폭은 실용적으로 추산이 가능한 파랑 경사를 이용하여 표현할 수 있다.

Keywords

References

  1. Arseniev, A.C. and Shelkovnikov, N.K. (1991). Dynamics of sea long waves. Moscow State University Press, Moscow (in Russian)
  2. Caputo, J.-G. and Stepanyants, Y.A. (2003). Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlinear Processes in Geophysics, vol. 10, 407-424 https://doi.org/10.5194/npg-10-407-2003
  3. Engelbrecht, J.K., Fridman, V.E. and Pelinovsky, E.N. (1988). Nonlinear Evolution Equations (Pitman Research Notes in Mathematics Series, No. 180). London: Longman
  4. Gurbatov, S., Malakhov, A. and Saichev, A. (1991). Nonlinear random waves and turbulence in nondispersive media: waves, rays and particles. Manchester University Press, Manchester
  5. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech., vol. 60, 769-799 https://doi.org/10.1017/S0022112073000479
  6. Murty, T. (1977). Seismic sea waves – Tsunamis. Canada
  7. Ostrovsky, L. and Pelinovsky, E. (1976). Nonlinear evolution of tsunami waves. Bull. Roy. Soc. New Zealand, vol. 15, 203-211
  8. Pelinovsky, E.N. (1976). Spectral analysis of simple waves. Radiophysics and Quantum Electronics, vol. 19, N. 3, 262-270
  9. Pelinovsky, E.N. (1982). Nonlinear Dynamics of Tsunami Waves. Applied Physics Institute Press, Gorky (in Russian)
  10. Pelinovsky, E.N. and Troshina, E.N. (1994). Propagation of long waves in straits. Phys. Oceanography, vol. 5, N. 1, 43-48 https://doi.org/10.1007/BF02197568
  11. Rudenko, O. and Soluyan, S. (1977). Theoretical background of nonlinear acoustics. Plenum, N.-Y
  12. Shuto, N. (1985). The Nikhonkai-Chubu earthquake tsunami on the North Akita coast. Coastal Engineering in Japan, vol. 28, 255-264 https://doi.org/10.1080/05785634.1985.11924420
  13. Stoker, J.J. (1957). Water waves. Willey Inter Science, NY
  14. Tan, W.Y. (1992). Shallow water hydrodynamics. Elsevier, N.Y
  15. Tsuji, Y., Yanuma, T., Murata, I. and Fujiwara, C. (1991). Tsunami ascending in rivers as an undular bore. Natural Hazards, vol. 4, 257-266 https://doi.org/10.1007/BF00162791
  16. Zahibo, N., Pelinovsky, E., Talipova, T., Kozelkov, A., and Kurkin, A. (2006). Analytical and numerical study of nonlinear effects at tsunami modelling. Applied Mathematics and Computation. vol. 174, No. 2, 795-809 https://doi.org/10.1016/j.amc.2005.05.014
  17. Voltsinger, N.E., Klevanny, K.A. and Pelinovsky, E.N. (1989). Long wave dynamics of the coastal zone, Hydrometeoisdat, Leningrad (in Russian)
  18. Whitham, G.B. (1974). Linear and Nonlinear Waves. Wiley, N.Y
  19. Wu, Y.H. and Tian, J.-W. (2000). Mathematical analysis of long-wave breaking on open channels with bottom friction. Ocean Engineering, vol. 26, 187-201