초록
무선통신 채널에서 높은 전송 속도를 가능하게 하는 공간다중화 MIMO 시스템 수신부에서 다중화된 신호를 검출하는 것은 어려운 작업이며, 최근 다양한 신호검출 기법들이 개발되어졌다. 다양한 신호검출 기법 중 maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD), sphere decoding (SD)과 같은 기존 기법들은 maximum likelihood (ML)기법과 유사한 성능을 가진 것으로 보고되었다. 본 논문에서는 ML 기법과 거의 동일한 성능을 가지면서 낮은 연산복잡도를 보이는 새로운 신호검출 기법을 제안한다. 모의실험을 통하여 제안된 기법은 ML 기법과 거의 동일한 성능을 보이면서 MMSE-OSIC와 유사한 연산복잡도를 가지는 것을 보인다. 또한 기존의 QRM-MLD, SD 기법들의 경우 hard decision 후 추가적인 연산을 통해 soft decision을 위한 log likelihood ratio(LLR) 값을 생성하는 반면, 제안된 기법에서는 추가적인 연산 없이 LLR 값을 성공적으로 생성할 수 있음을 보인다.
In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task, and various demultiplexing methods have been developed recently by many researchers. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MM)), and sphere decoding (SD) schemes have been reported to achieve a (near) maximum likelihood (ML) performance. In this paper, we propose a novel signal detection method that achieves a near ML performance in a computationally efficient manner. The proposed method is demonstrated via a set of computer simulations that the proposed method achieves a near ML performance while requiring a complexity that is comparable to that of the conventional MMSE-OSIC. We also show that the log likelihood ratio (LLR) values for all bits are obtained without additional calculation but as byproduct in the proposed detection method, while in the previous QRM-MLD, SD, additional computation is necessary after the hard decision for LLR calculation.