• Title/Summary/Keyword: Spatially Multiplexing

Search Result 21, Processing Time 0.017 seconds

A Method to Compensate a Luminance Distortion of a Time-multiplexing Spatially Interlaced Stereoscopic Three-dimensional Display

  • Park, Minyoung;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.436-442
    • /
    • 2018
  • In a spatially interlaced stereoscopic (SIS) three-dimensional (3D) display to be realized by providing the observer a part of left-eye/right-eye images, a loss of information can be perceived due to the un-shown part of each image. In order to resolve that problem, an improved SIS 3D display is proposed to deliver the images without loss of information to the observer using a time-multiplexing scheme. However, that time-multiplexing SIS also has a problem of luminance distortion when the desired luminance is not shown due to an insufficient response of the liquid crystal cell. In this paper, we propose a new method by optimizing the image data to show correct luminance with minimum distortion.

A Signal Detection Method for Uplink Multiuser Systems Based on Collaborative Spatial Multiplexing (협력적 공간다중화 기반 상향링크 다중사용자 시스템을 위한 신호검출 기법)

  • Im, Tae-Ho;Kim, Yeong-Jun;Jung, Jae-Hoon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.229-237
    • /
    • 2010
  • The conventional detection methods developed for spatially-multiplexed MIMO systems such as OSIC and QRD-M show performance difference for each user depending on the order of detection when they are applied to detection of multi-user signals in uplink multiuser systems based on collaborative spatial multiplexing. In this paper, a signal detection method for uplink multiuser systems based on collaborative spatial multiplexing is proposed to provide similar performance for each user while its performance is close to the case of ML detection. Compared with QRD-M method, computational complexity of the proposed signal detection method is similar in the case of QPSK, and significantly lower in the case of high modulation order with 16-QAM and 64-QAM.

Multiplexing of UHDTV Based on MPEG-2 TS (MPEG-2 TS 기반의 UHDTV 다중화)

  • Jang, Euy-Doc;Park, Dong-Il;Kim, Jae-Gon;Lee, Eung-Don;Cho, Suk-Hee;Choi, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.205-216
    • /
    • 2010
  • In this paper, a method of MPEG-2 Transport Stream (TS) multiplexing for Ultra HDTV (UHDTV) and its design and implementation as a SW tool is described. In practice, UHD video may be divided into several HD videos and each video is encoded in parallel. Therefore, it is necessary to synchronize and multiplex multiple bitstreams encoding each HD video for transmitting and storing UHD video. In this paper, it is assumed that 4 HD videos partitioning a UHD spatially are encoded as H.264/AVC and two 5.0 channel audios are encoded by AC-3. Therefore, 4 H.264/AVC elementary streams (ESs) and 2 AC-3 ESs is mainly considered in the TS multiplexing of UHD. For the carriage of H.264/AVC and AC-3 over MPEG-2 TS, PES packetization and TS multiplexing are designed and implemented based on the extended specification of the MPEG-2 Systems and ATSC (Digital audio compressed standard), respectively. The implemented UHD TS multiplexing tool emulates real time HW operation in the time unit corresponding to the duration of one TS packet transmission in a given TS rate. In particular, in order to satisfy the timing model, the buffers defined in the TS System Target Decoder (T-STD) are monitored and their statuses are considered in the scheduling of TS multiplexing. For UHD multiplexing, two kinds of multiplexing structures, which are UHD re-multiplexing and UHD program multiplexing, are implemented and their strength and weakness are investigated. The developed UHD TS multiplexing tool is tested and verified in terms of the syntax and semantics conformance and functionalities by using a commercial analyzer and real-time presentation tools.

A Soft Output Enhancement Technique for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 Soft Output 성능향상 기법)

  • Kim, Jin-Min;Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.734-742
    • /
    • 2008
  • In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task and various demultiplexing methods have been developed. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD), sphere decoding (SD), QOC, and MOC schemes have been reported to achieve a (near) maximum likelihood (ML) hard decision performance. In general, however, the reliability of soft output of these schemes is not satisfactory. In this paper, we propose a method which enhances the reliability of soft output. By computer simulations, we demonstrate the improved performance by the proposed method.

Outage Performance of a Multi-Cell MIMO-OFDM Broadcast Transmission Method (다중-셀 다중 안테나 직교 주파수분할 다중화 기반 브로드캐스트 전송 방식의 아웃티지 성능)

  • Park, Jae-Cheol;Kim, Yun-Hee;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.720-726
    • /
    • 2008
  • In this paper, we propose a multi-cell cooperation method for broadcast packet data services in the orthogonal frequency division multiplexing (OFDM)-based cellular system with multiple transmit antennas. In the proposed method, to transmit two streams of spatially demultiplexed or transmit diversity coded symbols over a number of transmit antennas, we divide a coded packet into multiple subparts to which different cell groups and antenna pairs are assigned. The proposed method enhances the diversity order by transforming the channel frequency responses of two symbol streams in each subpart of the broadcast packet. The increase in diversity of the proposed method is shown with the outage probability under various configurations.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Efficient Transmission Mode Selection Scheme for MIMO-based WLANs

  • Thapa, Anup;Kwak, Kyung Sup;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2365-2382
    • /
    • 2014
  • While single-user spatial multiplexing multiple-input multiple-output (SU-MIMO) allows spatially multiplexed data streams to be transmitted to one node at a time, multi-user spatial multiplexing MIMO (MU-MIMO) enables the simultaneous transmission to multiple nodes. However, if the transmission time required to send packets to each node varies considerably, MU-MIMO may fail to utilize the available MIMO capacity to its full potential. The transmission time typically depends upon two factors: the link quality of the selected channel and the data length (packet size). To utilize the cumulative capacity of multiple channels in MIMO applications, the assignment of channels to each node should be controlled according to the measured channel quality or the transmission queue status of the node.A MAC protocol design that can switch between MU-MIMO and multiple SU-MIMO transmissions by considering the channel quality and queue status information prior to the actual data transmission (i.e., by exchanging control packets between transmitter and receiver pairs) could address such issues in a simple but in attractive way. In this study, we propose a new MAC protocol that is capable of performing such switching and thereby improve the system performance of very high throughput WLANs. The detailed performance analysis demonstrates that greater benefits can be obtained using the proposed scheme, as compared to conventional MU-MIMO transmission schemes.

Visual Cell OOK Modulation : A Case Study of MIMO CamCom (시각 셀 OOK 변조 : MIMO CamCom 연구 사례)

  • Le, Nam-Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.781-786
    • /
    • 2013
  • Multiplexing information over parallel data channels based on RF MIMO concept is possible to achieve considerable data rates over large transmission ranges with just a single transmitting element. Visual multiplexing MIMO techniques will send independent streams of bits using the multiple elements of the light transmitter array and recording over a group of camera pixels can further enhance the data rates. The proposed system is a combination of the reliance on computer vision algorithms for tracking and OOK cell frame modulation. LED array are controlled to transmit message in the form of digital information using ON-OFF signaling with ON-OFF pulses (ON = bit 1, OFF = bit 0). A camera captures image frames of the array which are then individually processed and sequentially decoded to retrieve data. To demodulated data transmission, a motion tracking algorithm is implemented in OpenCV (Open source Computer Vision library) to classify the transmission pattern. One of the most advantages of proposed architecture is Computer Vision (CV) based image analysis techniques which can be used to spatially separate signals and remove interferences from ambient light. It will be the future challenges and opportunities for mobile communication networking research.

A Computationally Efficient Signal Detection Method for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 효율적 계산량의 신호검출 기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.616-626
    • /
    • 2007
  • In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task, and various demultiplexing methods have been developed recently by many researchers. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MM)), and sphere decoding (SD) schemes have been reported to achieve a (near) maximum likelihood (ML) performance. In this paper, we propose a novel signal detection method that achieves a near ML performance in a computationally efficient manner. The proposed method is demonstrated via a set of computer simulations that the proposed method achieves a near ML performance while requiring a complexity that is comparable to that of the conventional MMSE-OSIC. We also show that the log likelihood ratio (LLR) values for all bits are obtained without additional calculation but as byproduct in the proposed detection method, while in the previous QRM-MLD, SD, additional computation is necessary after the hard decision for LLR calculation.

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly