DOI QR코드

DOI QR Code

Raman Scattering Characteristics on 3C-SiC Thin Films Deposited by APCVD Method

APCVD법으로 증착한 3C-SiC 박막의 라만 산란 특성

  • 정준호 (울산대학교 전기전자정보시스템공학부) ;
  • 정귀상 (울산대학교 전기전자정보시스템공학부)
  • Published : 2007.07.01

Abstract

This paper describes the Raman scattering characteristics of polycrystalline (poly) 3C-SiC thin films, in which they were deposited on the oxidized Si substrate by APCVD method according to growth temperature. Since the phonon modes were not measured for $0.4{\mu}m$ thick 3C-SiC, $2.0{\mu}m$ thick 3C-SiC deposited on the oxidized Si at $1180^{\circ}C$, in which TO (transverse optical mode) and LO (longitudinal optical mode) phonon modes were appeared at 794.4 and $965.7cm^{-1}$, respectively. The broad FWHM (full width half maximum) can explain that the crystallinity of 3C-SiC deposited at $1180^{\circ}C$ becomes polycrystalline instead of disorder crystal. Additionally, the ratio of intensity $I_{LO}/I_{TO}{\approx}1.0$ of 3C-SiC indicates that the crystal disorder of $3C-SiC/SiO_2/Si$ is small. Compared poly $3C-SiC/SiO_2$ with $SiO_2/Si$ interfaces, $1122.6cm^{-1}$ phonon mode was measured which may belong to C-O bonding and two phonon modes, 1355.8 and $1596.8cm^{-1}$ related to D and G bands of C-C bonding in the Raman range of 200 to $2000cm^{-1}$.

Keywords

References

  1. P. M. Sarro, 'Silicon carbide as a new MEMS technology', Sensors & Actuators A, Vol. 82, p. 210, 2000 https://doi.org/10.1016/S0924-4247(99)00335-0
  2. L. Jiang, R. Cheung, J. Hedley, M. Hassan, A. J. Harris, J. S. Burdess, M. Mehregany, and C. A. Zorman, 'SiC Cantilever resonators with electrothermal actuation', Sensors & Actuators A, Vol. 128, p. 376, 2006 https://doi.org/10.1016/j.sna.2006.01.045
  3. C. A. Zorman and M. Mehregany, 'Silicon carbide for MEMS and NEMS', Proc. IEEE, Vol. 2, p. 1109, 2002
  4. M. Mehregany and C. A. Zorman, 'SiC MEMS:. Opportunities and challenges for applications in harsh. environments', Thin Solid Films, Vol. 355-356, p. 518, 1999
  5. R. Hull, 'Properties of crystalline silicon', INSPEC, London, 1999
  6. D. N. Talwar and J. C. Sherbondy, 'Thermal expansion coefficient of 3C-SiC', Appl, Phys. Lett., Vol. 67, No. 22, p. 3301, 1995 https://doi.org/10.1063/1.115227
  7. D. Gao, B. J. Wijesundara, C. Carraro, R. T. Howe, and R. Maboudian, 'Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology', IEEE Sensors J., Vol. 4, No.4, p. 441, 2004 https://doi.org/10.1109/JSEN.2004.828859
  8. N. Jin, G. Quancheng, S. Guosheng, and L. Zhongli, 'The ICP etching technology of 3C-SiC films', J. Phys. Conf. Ser., Vol. 34, p. 511, 2006 https://doi.org/10.1088/1742-6596/34/1/084
  9. S. H. Kim, C. E. Kim, and Y. J. Oh, 'Influence of $Al_2O_3$ buffer layer on the crystalline structure and dielectric property of $PbTiO_3$ thin film by sol - gel processing', J. of Mater. Sci. Lett., Vol. 16, No. 4, p. 257, 1997 https://doi.org/10.1023/A:1018528529553
  10. 정귀상, 김강산, 한기봉, 'HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성질', 전기전자재료학회논문지, 20권, 2호, p. 156, 2007 https://doi.org/10.4313/JKEM.2007.20.2.156
  11. G. V. Zaia, 'Epitaxial growth of Si and 3C-SiC by chemical vapor deposition', Technischen Uni., Ph.D. Thesis, 2002
  12. Z. C. Feng, J. Mascarenhas, W. J. Choyke, and J. A. Powell, 'Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si', J. Appl. Phys., Vol. 64, p. 3176, 1988 https://doi.org/10.1063/1.341533
  13. H. Harima, 'Raman scattering characterization on SiC', Microelectron. Eng., Vol. 83, p. 126, 2006 https://doi.org/10.1016/j.mee.2005.10.037
  14. F. Tuinstra and J. L. Koenig, 'Raman spectrum of graphite', J. Chem. Phys., Vol. 53, p. 1126, 1970 https://doi.org/10.1063/1.1674108
  15. A. C. Ferrari and J. Robertson, 'Interpretation of Raman spectra of disordered and amorphous carbon', Phys. Rev. B, Vol. 61, p. 14095, 2000 https://doi.org/10.1103/PhysRevB.61.14095
  16. D. W. Feldman, J. H. Parker, Jr. W. J. Choyke, and L. Patrick, 'Phonon dispersion curves by raman scattering in SiC, ploytypes 3C, 4H, 6H, 15R, and 21R', Phys. Rev. B, Vol. 173, p. 787, 1968 https://doi.org/10.1103/PhysRev.173.787
  17. A. Jorio, A. G. Souza Filho, V. W. Brar, A. K. Swan, M. S. Ulnu, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, 'Polarized resonant raman study of isolated single-wall carbon nanotubes: symmetry selection rules, dipolar and multipolar antenna effects', Phys. Rev. B, Vol. 65, p. 1214021, 2002
  18. D. Olego, M. Cardona, and P. Vogl, 'Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC', Phys. Rev. B, Vol. 25, No. 6, p. 3878, 1982 https://doi.org/10.1103/PhysRevB.25.3878
  19. W. L. Zhu, J. L. Zhu, S. Nishino, and G. Pezzotti, 'Spatially resolved raman spectroscopy evaluation of residual stresses in 3C-SiC layer deposited on Si substrates with different crystallographic orientations', Appl, Surf. Sci., Vol. 252, p. 2346, 2006 https://doi.org/10.1016/j.apsusc.2005.04.020