DOI QR코드

DOI QR Code

Synthesis of novolac resins by condensation of phenolic compounds with formaldehyde

폐놀계 화합물과 포름알데히드의 축합반응으로부터 노볼락 레진의 합성

  • Lee, Jong-Dae (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Tae-Jun (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Chang-Hoon (Department of Chemical Engineering, Hanyang University) ;
  • Cho, Kyung-Tae (Department of Chemical Engineering, Chungbuk National University)
  • 이종대 (충북대학교 공과대학 화학공학과) ;
  • 이태준 (충북대학교 공과대학 화학공학과) ;
  • 이창훈 (한양대학교 화학공학과) ;
  • 조경태 (충북대학교 공과대학 화학공학과)
  • Published : 2007.09.30

Abstract

Novolac is widely used as the primary solid component of most photoresists in semiconductor and microelectronic devices. In this study, novolac resins were prepared by condensation of 35% formaldehyde with phenolic compounds such as m-/p-cresol, 2,5-dimethylphenol and bisphenol A in the presence of oxalic acid as catalyst. The average molecular weight $(M_w)$ of these novolac resins has been varied on the changing of mixing ratio of m-/p-cresol/2,5-dimethylphenol/bisphenol A or formaldehyde/phenolic compound. Also, thermal properties of novolac were observed by TGA.

Keywords

References

  1. A. Knop and L.A. Pilato, 'Phenolic Resin', p. 1, Spinger-Verlag, Berlin (1986)
  2. A. Furuta, M. Hanabata and Y. Uemura, High Performance Positive Photoresists, J. Vac. Sci. Technol. B, 4, 430 (1986) https://doi.org/10.1116/1.583349
  3. S. Miloshev, P. Novakov, V. Dimitrov and I. Gitsov, Synthesis of Novolac Resins: 2. Influence of The Reaction Medium on The Properties of the Novolac Oligomers, Polymer, 32, 3067 (1991) https://doi.org/10.1016/0032-3861(91)90211-Z
  4. L. E. Bogan, Determination of Cresol Novolak Copolymer Composition and Branch Density Using Carbon-13 NMR Spectroscopy, Macromolecules, 24, 4807 (1991) https://doi.org/10.1021/ma00017a012
  5. E. Bogan, The Novolak Synthesis Reaction: A Description Based on Reactivities, Macromolecules, 25, 1966 (1992) https://doi.org/10.1021/ma00033a021
  6. T. F. Yeh, H. Y. Shih and A. Reiser, Percolation View of Novolak Dissolution and Dissolution Inhibition, Macromolecules, 25, 5345 (1992) https://doi.org/10.1021/ma00046a037
  7. R. Yang, S. A. Soper and W. Wang, A New UV Lithography Photoresist Based on Composite of EPON Resins 165 and 154 for Fabrication of High-Aspect-Ratio Microstructures, Sens. Actuators A: Phys. 135, 625 (2007) https://doi.org/10.1016/j.sna.2006.09.009
  8. C. M. Berger and C. L. Henderson, The Effect of Humidity on Water Sorption in Photoresist Polymer Thin Films, Polymer, 44, 2101 (2003) https://doi.org/10.1016/S0032-3861(03)00079-X
  9. D. Roy, A. Gandhi, P. K. Basu, P. Raghunathan and S. V. Eswaran, Optimization of Monomer Content and Degree of Linearity in Lithographically Interesting Novolac Copolymers using NMR Spectroscopy, Microelectronic Ens., 70, 58 (2003) https://doi.org/10.1016/S0167-9317(03)00391-5
  10. P. J. de Bruyn, L. M. Foo, A. S. C. Lim, M. G. Looney and D. H. Solomon, The Chemistry of Novolac Resins. Part 4. The Strategic Synthesis of Model Compounds, Tetrahedron, 53, 13915 (1997) https://doi.org/10.1016/S0040-4020(97)00903-4
  11. M. Kobayashi, F. Sanda and T. Endo, Application of Phosphonium Ylides to Latent Catalysts for Polyaddition of Bisphenol A Diglycidyl Ether with Bisphenol A: Model System of Epoxy-Novolac Resin, Macromolecules, 32, 4751 (1999) https://doi.org/10.1021/ma990149z
  12. Z. Anthony, U. S. Patent 5,130,410 (1992)
  13. S. K. Lee and H. Lee, Synthesis and Properties of Mixed meta-and para-Cresol/Formaldehyde Novolak Resins, Polymer (Korea), 16, 662 (1992)
  14. U. Westerwelle, G. Bahr, G. Grutzner and F. Reuther, Partially Carboxymethylated Novolaks for Photoresist Systems: New Photoresists for Development under Mildly Alkaline Conditions, Microelectronic Eng., 41/42, 343 (1998) https://doi.org/10.1016/S0167-9317(98)00079-3
  15. U. Yasunori, M. Hiroshi, and T. Yoshiyuki, U. S. Patent 6,815,140 (2004)