엘레멘트 인버스 재킷 변환과 유사한 DFT의 새로운 희소 행렬 분해

A New Sparse Matrix Analysis of DFT Similar to Element Inverse Jacket Transform

  • 이광재 (한려대학교 멀티미디어정보통신공학과) ;
  • 박대철 (한남대학교 정보통신공학과) ;
  • 이문호 (전북대학교 전자정보공학부) ;
  • 최승제 (전북대학교 전자정보공학부)
  • 발행 : 2007.04.30

초록

본 논문은 엘레멘트 인버스 처리에 근거한 재킷 변환을 통한 DFT 행렬의 새로운 표현을 다룬다. DFT 행렬의 역을 단지 재킷 변환의 소행렬 분해에 따라 표현하며 이러한 결과는 DFT 행렬의 역이 단지 이의 희소 행렬과 치환 행렬에만 관련됨을 보여준다. 재킷 행렬을 통한 DFT 행렬의 분해는 블록 변조 특성을 나타내는 강한 기하 구조를 갖는다. 이는 재킷 행렬을 통해 분해된 DFT 행렬은 블록 변조 과정으로 해석할 수 있음을 의미한다.

This paper addresses a new representation of DFT matrix via the Jacket transform based on the element inverse processing. We simply represent the inverse of the DFT matrix following on the factorization way of the Jacket transform, and the results show that the inverse of DFT matrix is only simply related to its sparse matrix and the permutations. The decomposed DFT matrix via Jacket matrix has a strong geometric structure that exhibits a block modulating property. This means that the DFT matrix decomposed via the Jacket matrix can be interpreted as a block modulating process.

키워드

참고문헌

  1. N. Ahmed and K.R. Rao, Orthogonal Transforms for Digital Signal Processing, Berlin, Germany: Springer-Verlag, 1975
  2. M.H. Lee, 'A New Reverse Jacket Transform and Its Fast Algorithm,' IEEE, Trans. On Circuit and System, vol. 47. no. 1, pp.39-47, Jan. 2000 https://doi.org/10.1109/82.818893
  3. M.H. Lee and Y. Yasuda, 'Simple Systolic Array for Hadamard Transform,' Electronics Letters, vol. 26 no.18, pp 1478-1479, August,1990 https://doi.org/10.1049/el:19900949
  4. M.H. Lee, B. S. Rajan, and J.Y. Park, 'A Generalized Reverse Jacket Transform,' IEEE Trans. Circuits Syst. II, vol.48, no. 7, pp.684-690, July, 2001 https://doi.org/10.1109/82.958338
  5. J. Hou, M.H. Lee, and J.Y. Park, 'New Polynomial Construction of Jacket Transform,' IEICE Trans. Fund. vol.E86.A, no.3, pp. 652-660, March 2003
  6. S.R. Lee, J.H. Yi, 'Fast Reverse Jacket Transform as an Alternative Representation of N point Fast Fourier Transform,' Journal of Mathematical Imaging and Vision, KL1419-03, pp.1413-1420, Nov. 2001
  7. C.P. Fan, J.F. Yang, 'Fast Center Weighted Hadamard Transform Algorithm,' IEEE Trans. on CAS-II, vol.45, No.3, pp.429-432, March. 1998
  8. M.H. Lee, D.Y. Kim, 'Weighted Hadamard Transform for S/N Ratio Enhancement in Image Transform,' Proc. of IEEE ISCAS'84, pp.65-68, 7-10 May, 1984, Montreal, Canada
  9. M.H. Lee, 'The Center Weighted Hadamard Transform,' IEEE Trans. On Circuits and Systems, vol. 36, no.9, pp.1247-1249, Sep. 1989 https://doi.org/10.1109/31.34673
  10. D.C. Park, M.H. Lee, and E. Choi, 'Revisited DFT matrix via the reverse jacket transform and its application to communication,' The 22nd symposium on Information theory and its applications (SITA 99), Yuzawa, Niigata, Japan, Nov.30-Dec.3, 1999
  11. M.H. Lee and K. Finlayson, 'A simple element inverse Jacket transform coding,' IEEE Information Theory Workshop 2005 (ITW 2005), Rotorua, New Zealand, 29 Aug - 1st Sept. 2005
  12. http://en.wikipedia.org/wiki/Jacket matrix
  13. http://en.wikipedia.org/wiki/Category:Matrices
  14. http://en.wikipedia.org/wiki/user:leejacket