Effect of Glucose at High Concentrations on the Apoptosis of the Cultured Periodontal Ligament Cells and Osteoblasts

고농도 포도당이 뼈모세포와 치주인대세포의 세포자멸사에 미치는 영향에 관한 연구

  • Park, Sung-Ho (Department of Oral Anatomy, School of Dentistry, Kyung Hee University) ;
  • Jue, Seong-Suk (Department of Oral Anatomy, School of Dentistry, Kyung Hee University) ;
  • Hong, Jung-Pyo (Department of Oral Medicine, School of Dentistry, Kyung Hee University) ;
  • Shin, Je-Won (Department of Oral Anatomy, School of Dentistry, Kyung Hee University)
  • 박성호 (경희대학교 치의학전문대학원 구강해부학교실) ;
  • 주성숙 (경희대학교 치의학전문대학원 구강해부학교실) ;
  • 홍정표 (경희대학교 치의학전문대학원 구강내과학교실) ;
  • 신제원 (경희대학교 치의학전문대학원 구강해부학교실)
  • Published : 2007.12.30

Abstract

This experiment was designed to clarify the effect of extracellular glucose on the osteoblasts and periodontal ligament cells. The cells were incubated for 24 and 48 hours with ${\alpha}$-MEM including 1,000 mg/L (control group) and 4,500 mg/L (experimental group) of glucose. Then, the expressions of caspase-3, p38 MAPK, JNK-1, and ERK-1 were examined using Elisa assay and Western blot. The results were as follows: 1. The expression of caspase-3 and p38 MAPK was increased by the high extracellular glucose in both cells. 2. The expression of caspase-3 and p38 MAPK was increased greatly in the periodontal ligament cells than the E1 cells by the high extracellular glucose. 3. The expression of JNK-1 was increased by the high extracellular glucose in both cells. 4. The expression of ERK-1 was not changed by the high extracellular glucose in both cells. These results suggest that extracellular glucose at high concentrations may inhibit the periodontal regeneration process increasing cellular apoptosis. And p38 MAPK and JNK-1 pathway may be the most responsible intracellular pathway rather than ERK-1.

고농도 포도당이 뼈모세포와 치주인대세포의 세포자멸사에 미치는 영향과 그 경로를 알아보기 위하여 뼈모세포주인 MC3T3-E1 (E1) 세포와 사람 치주인대로부터 일차배양을 통해 얻은 치주인대세포를 1,000 mg/L 농도의 포도당이 포함된 배양액 (대조군)과 4,500 mg/L 농도의 포도당이 포함된 배양액 (실험군)으로 나누어 24시간과 48시간 배양하였다. 그 후, ELISA assay를 통해 p38 MAPK와 caspase-3의 발현을 평가하고 Western blot을 통해 JNK-1과 ERK-1의 발현을 평가하여 다음과 같은 결론을 얻었다. 1. 뼈모세포와 치주인대세포 모두 대조군에 비해 실험군에서 caspase-3와 p38 MAPK 발현이 증가하였다. 2. 실험군에서의 caspase-3와 p38 MAPK 발현은 뼈모세포에 비해 치주인대세포에서 더욱 크게 증가하였다. 3. 뼈모세포와 치주인대세포 모두 대조군에 비해 실험군에서 JNK-1 발현이 증가하였다. 4. 뼈모세포와 치주인대세포 모두 ERK-1 발현에는 변화가 없었다. 이상의 결과로 보아, 고혈당 조건에 의해 뼈모세포와 치주인대세포의 세포자멸사가 증가하며, 치주인대세포가 고혈당 조건에 더욱 민감하게 반응하여 세포자멸사가 크게 증가하는 것으로 생각된다. 또한 이들 세포의 세포자멸사 과정은 p38 MAPK와 JNK-1 경로가 관여하며 ERK-1 경로는 관여하지 않는 것으로 추정된다.

Keywords

References

  1. Khan CR. Insulin resistance. A common feature of diabetes mellitus. N Eng J Med 1986;315:252 https://doi.org/10.1056/NEJM198607243150410
  2. Ervasti T, Knutilla M, Pohjamo L, Haukipuro K. Relation between control of diabetes and gingival bleeding. J Periodontol 1985;56:154-157 https://doi.org/10.1902/jop.1985.56.3.154
  3. Min H. The clinical characteristics of Korean diabetic patients. Korean Diabetics 1992;16:163-173
  4. Shin CS. The prevalence of diabetics in yeon-cheon area of Gyeong Gi-do. Korean diabetics 1996;20: 264-270
  5. Auwerx J, Dequeker J, Bouillon R, Geusens P, Niijs J. Mineral metabolism and bone mass at peripheral and axial skeleton in diabetes mellitus. Diabetes 1988 37:8-12 https://doi.org/10.2337/diabetes.37.1.8
  6. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, White-house FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44:775-782 https://doi.org/10.2337/diabetes.44.7.775
  7. Hui SL, Epstein S, Johnson CC Jr. A prospective study of bone mass in patients with type I diabetes. J Clin Endocrinol Metab 1986;60:74-80 https://doi.org/10.1210/jcem-60-1-74
  8. Bouillon R. Diabetic bone disease. Calcif Tissue Int 1991;49:155-160 https://doi.org/10.1007/BF02556109
  9. Emrich LJ, Schlossman M, Genco RJ. Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol 1991 62:123-130 https://doi.org/10.1902/jop.1991.62.2.123
  10. Thorstensson H, Hugosen A. Periodontal disease experience in adult long duration insulin-dependent diabetics. J Clin Periodontol 1993;20:352-358 https://doi.org/10.1111/j.1600-051X.1993.tb00372.x
  11. Shlossman M, Knowler WC, Pettitt DJ, Genco RJ. Type 2 diabetes mellitus and periodontal disease. J Am Dent Assoc 1990;120:532-536
  12. Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 2005;146:3622-3631 https://doi.org/10.1210/en.2004-1677
  13. Sasaki T, Kaneko H, Ramamurthy NS, Golub LM. Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 1991;231(1):25-34 https://doi.org/10.1002/ar.1092310105
  14. Verhaeghe J, Van Herck E, Visser WJ et al. Bone and mineral metabolism in BB rats with long-term diabetes. Diabetes 1990;39:477-482 https://doi.org/10.2337/diabetes.39.4.477
  15. Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH2-terminal kinase and caspase-3. Circulation 2000;101:2618-2624 https://doi.org/10.1161/01.CIR.101.22.2618
  16. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435-2444 https://doi.org/10.1128/MCB.19.4.2435
  17. Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature 2001;410:37-40 https://doi.org/10.1038/35065000
  18. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol 2002;20:55-72 https://doi.org/10.1146/annurev.immunol.20.091301.131133
  19. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood 2003;101:4667-4679 https://doi.org/10.1182/blood-2002-12-3647
  20. Villa P, Kaufmann SH, Earnshaw WC. Caspases and caspase inhibitors. Trends Biochem Sci 1997;22(10): 388-393 https://doi.org/10.1016/S0968-0004(97)01107-9
  21. Henkart PA. ICE family proteases: mediators of all apoptotic cell death? Immunity 1996;4:195-201 https://doi.org/10.1016/S1074-7613(00)80428-8
  22. Wang X, Zelenski NG, Yang J. Cleavage of sterol regulatory element binding protein (SREBPs) by CPP32 during apoptosis. EMBO J 1996;15:1012-1020
  23. Kumar S. The apoptotic cysteine protease CPP32. Int J Biochem Cell Biol 1997;29:393-396 https://doi.org/10.1016/S1357-2725(96)00146-X
  24. Raman M, Chen W, Cobb MH. Differential regulation and properites of MAPKs. Oncogene 2007;26: 3100-3112 https://doi.org/10.1038/sj.onc.1210392
  25. Xia Z, Dickens M, Raingeaud J. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science1995;270:1326-1331 https://doi.org/10.1126/science.270.5240.1326
  26. Komuro I, Kudo S, Yamazaki T. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 1996;10:631-636 https://doi.org/10.1096/fasebj.10.5.8621062
  27. Kudoh S, Komuro I, Minuzo T. Angiotensin II stimulates c-Jun NH2terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 1997;80:139-146 https://doi.org/10.1161/01.RES.80.1.139