Electrochemical Detection of Lead and Cadmium in Human Saliva by Anodic Stripping Voltammetry (ASV) Analysis: A Pilot Study

양극 벗김 전압전류법 (Anodic stripping voltammetry: ASV)을 이용한 인체 타액 내 납과 카드뮴의 검출: 예비 연구

  • Kim, Young-Jun (Department of Oral Medicine & Diagnosis & Research Institute of Oral Science, College of Dentistry, Kangnung National University) ;
  • Kim, Cheul (Department of Oral Medicine & Diagnosis & Research Institute of Oral Science, College of Dentistry, Kangnung National University)
  • 김영준 (강릉대학교 치과대학 구강내과.진단학 교실 및 구강과학연구소) ;
  • 김철 (강릉대학교 치과대학 구강내과.진단학 교실 및 구강과학연구소)
  • Published : 2007.12.30

Abstract

The aim of this study was to evaluate the differences of salivary lead (Pb) and cadmium (Cd) concentrations, using ASV analysis, after various pre-treatment procedures. 10 unstimulated whole saliva samples of non-exposed subjects to Pb and Cd were collected. Each sample was divided into 6 aliquots and centrifugation was performed in only 3 aliquots. After centrifugation, 3 different types of pre-treatment procedures were carried out. Also, these pre-treatment procedures were carried out for another 3 aliquots, without centrifugation. Pre-treated aliquots were analyzed electrochemically, by ASV. The results are as follows: 1. Mean concentration of Pb in saliva after centrifugation was significantly higher than that of non-centrifugation. 2. In the detection sensitivity of Pb in saliva, those of simple dilution technique by HCl and acid digestion technique by nitric acid were significantly higher than that of simple dilution technique by electrolyte. 3. Mean concentration of Cd in saliva after centrifugation was significantly higher than that of non-centrifugation. 4. In the detection sensitivity of Cd in saliva, those of simple dilution technique by HCl and acid digestion technique by nitric acid were higher than that of simple dilution technique by electrolyte. But, there were no significant differences between them.

본 연구는, 양극 벗김 전압전류법 (Anodic stripping voltammetry: ASV)을 이용하여, 전처리 과정 (pre-treatment procedure)에 따른 인체 타액내 납 (Pb)과 카드뮴 (Cd)의 검출농도의 차이를 비교하기 위하여 시행되었다. 납과 카드뮴에 노출되지 않을 것으로 추정되는 남녀 10명을 대상으로, 비자극성 전타액을 채취한 후, 각 시료를 6개의 시편으로 나누어서 원심분리를 시행한 후 3가지 전처리를 하는 경우와 원심분리를 시행하지 않고 3가지 전처리를 하는 경우로 구분하였다. 타액의 전처리법은 simple dilution by electrolyte, simple dilution by HCl, acid digestion by nitric acid 등 3가지를 각각 시행했으며, ASV법으로 타액 내 납과 카드뮴의 농도를 분석하였다. 실험결과는 다음과 같다. 1. '타액 시료의 전처리 방법에 따른 타액내 납의 평균 농도'를 살펴보면, 원심분리 시행군이 원심분리 미시행군에 비하여 평균농도가 유의성 있게 높았다. 2. 타액내 납의 검출에 있어서, 단순히 전해질로 희석만 한 경우보다 염산이나 질산으로 전처리를 시행한 경우에 유의성 있게 더 높은 농도를 나타내었다. 3. '타액 시료의 전처리 방법에 따른 타액내 카드뮴의 평균 농도'를 살펴보면, 원심분리 시행군이 원심분리 미시행군에 비하여 평균농도가 유의성 있게 높았다. 4. 타액내 카드뮴의 검출에 있어서, 단순히 전해질로 희석만 한 경우보다 염산이나 질산으로 전처리를 시행한 경우가 더 높은 농도를 나타내었으나, 유의한 차이는 아니었다.

Keywords

References

  1. Timchalk C, Poet TS, Lin Y, Weitz KK, Zhao R, Thrall, KD. Development of an integrated microanalytical system for analysis of lead in saliva and linkage to a physiologically based pharmacokinetic model describing lead saliva secretion. AIHAJ 2001;62:295-302 https://doi.org/10.1202/0002-8894(2001)062<0295:DOAIMS>2.0.CO;2
  2. Wilhelm M, Pesch A, Rostek U, Begerow J, Schmitz N, Idel H, Ranft U. Concentrations of lead in blood, hair and saliva of German children living in three different areas of traffic density. Sci Total Environ 2002;297:109-118 https://doi.org/10.1016/S0048-9697(02)00101-8
  3. West CE, Hardcastle JL, Compton RG. Sonoelectrical determination of lead in saliva. Electroanalysis 2002;14:1470-1478 https://doi.org/10.1002/1521-4109(200211)14:21<1470::AID-ELAN1470>3.0.CO;2-9
  4. P'an AYS. Lead level in saliva and in blood. J Toxicol Environ Health 1981;7:273-280 https://doi.org/10.1080/15287398109529978
  5. Brodeur J, Jacasse Y, Talbot D. Influence of removal from occupational lead exposure on blood and saliva lead concentrations. Toxicol Lett 1983;19:195-199 https://doi.org/10.1016/0378-4274(83)90282-5
  6. Gonzalez M, Banderas JA, Baez A,Belmont R. Salivary lead and cadmium in a young population residing in Mexico city. Toxicol Lett 1997;93:55-64 https://doi.org/10.1016/S0378-4274(97)00067-2
  7. Vaughan M-A, Baines AD, Templeton DM. Multielement analysis of biological samples by ICP-MS spectrometry. II. Rapid survey method for profiling trace elements in body fluids. Clin Chem 1991;37:210-215
  8. Menegario AA, Packer AP, Gine MF. Determination of Ba, Cd, Cu, Pb and Zn in saliva by isotope dilution direct injection inductively coupled plasma mass spectrometry. Analyst 2001;126:1363-1366 https://doi.org/10.1039/b102638k
  9. Hardcastle JL, West CE, Compton RG. The membrane free sonoelectroanalytical determination of trace levels of lead and cadmium in human saliva. Analyst 2002;127:1495-1501 https://doi.org/10.1039/b204886h
  10. 하정철. Trace element analyzer(TEA)를 이용한 식품내 중금속류(Pb, Cd, As) 고감도 측정기술에 관한 연구. 서울, 1997, 한국소비자보호원
  11. Feldman BJ, Osterloh JD, Hata BH, D'Alesssandro A. Determination of lead in blood by square wave anodic stripping voltammetry at a carbon disk ultramicroelectrode. Anal Chem 1994;66:1983-1987 https://doi.org/10.1021/ac00085a010
  12. Lin Y, Zhao R, Thrall KD, Timchalk C, Bennett WD, Matson DW. Integration of microfluids/electrochemical systems for trace metal analysis by stripping voltammetry. Proc Soc Optical Engin (SPIE) 1999;3877:248-256
  13. Wang J. Stripping analysis of trace metals in human body fluids. J Electroanal Chem 1982;139:225-232 https://doi.org/10.1016/0022-0728(82)85122-X
  14. Bannon DI, Chisolm JJ. Anodic stripping voltammetry compared with graphite furnace atomic absorption spectrophotometry for blood lead analysis. Clinical chemistry 2001;47:1703-1704
  15. Lee SW, Meranger, JC. Direct methods for the determination of lead in whole blood by anodic stripping voltammetry. Am J Med Tech 1980;46: 853-857
  16. Hardcastle JL, Murcott GG, Compton RG. Sonoelectroanalysis: Ultrasonically facilitated liberation and determination of copper in whole blood. Electoanlysis 2000;12:559-563 https://doi.org/10.1002/(SICI)1521-4109(200005)12:8<559::AID-ELAN559>3.0.CO;2-9
  17. Hardcastle JL, Compton RG. The electroanalytical detection and determination of copper in blood: ultrasonic enhanced solvent extraction coupled with electrochemical detection by sono-square-wave stripping voltammetry analysis. Electroanalysis 2002;14:753-759 https://doi.org/10.1002/1521-4109(200206)14:11<753::AID-ELAN753>3.0.CO;2-I
  18. Hardcastle JL, Compton RG. Sonoelectrical determination of heavy metal in fish gill mucous. Electroanalysis 2001;13:89-93 https://doi.org/10.1002/1521-4109(200102)13:2<89::AID-ELAN89>3.0.CO;2-Z
  19. Nriagu J, Burt B, Linder A, Ismail A, Sohn W. Lead levels in blood and saliva in low-income population of Detroit, Michigan. Int J hyg Environ Health 2006;209:109-121 https://doi.org/10.1016/j.ijheh.2005.11.005
  20. Burtis CA, Ashwood ER. Tietz Fundamentals of clinical chemistry. 4th ed, USA, 1996, W. B. Saunders
  21. Royce SE, Needleman HL. Case studies in environmental medicine: Lead toxicity. USA, 1990, US public health survey
  22. Moreno MA, Martin C, Vinage F, Ostapczuk P. Trace element levels in whole blood samples from residents of the city Badajoz, Spain. The science of total environment 1999;229:209-215 https://doi.org/10.1016/S0048-9697(99)00074-1
  23. White MA, Ohagan SA, Wright AL, Wilson HK. The measurement of salivary cadmium by electrothermal atomic absorption spectrophotometry and its use as a biological indicator of occupational exposure. J Exposure anal Environ Epidemiol 1992;2:195-206
  24. Iyengar V, Woittiez J. Trace element in human clinical specimens: evaluation of literliture data to identify reference values. Clin Chem 1988;34:474-481