마이크론 금속섬유 필터에서 탄소나노튜브의 직접 성장에 의한 나노구조체 합성 및 여과성능

Synthesis of Nanostructures by Direct Growth of Carbon Nanotubes on Micron-sized Metal Fiber Filter and its Filtration Performance

  • 이동근 (충남대학교 기계공학과) ;
  • 박석주 (한국에너지기술연구원 청정시스템연구센터) ;
  • 박영옥 (한국에너지기술연구원 청정시스템연구센터) ;
  • 류정인 (충남대학교 기계공학과)
  • Lee, Dong Geun (Department of Mechanical Engineering, Chungnam National University) ;
  • Park, Seok Joo (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Park, Young Ok (Clean Energy System Research Center, Korea Institute of Energy Research) ;
  • Ryu, Jeong In (Department of Mechanical Engineering, Chungnam National University)
  • 투고 : 2006.11.10
  • 심사 : 2007.01.29
  • 발행 : 2007.06.30

초록

마이크론 금속섬유 필터 표면상에 탄소나노튜브를 직접 합성 성장함으로써 마이크론 필터의 성능을 향상할 수 있었다. 탄소나노튜브는 합성조건에 따라 마이크론 섬유 주위를 덮는 덤불 나노구조체 또는 섬유 사이를 연결하는 망 형상의 나노구조체로 성장하였다. 탄소나노튜브가 성장한 금속필터와 탄소나노튜브가 성장하지 않은 금속필터의 여과성능을 측정하여 비교한 결과, 차압의 변화는 미미하나 여과효율은 더욱 향상되었고, 이는 탄소나노튜브가 오염 나노입자를 잡는 트랩으로 작용하였기 때문이다.

The filtration performance of micron-sized metal fibrous filter was improved by synthesizing carbon nanotubes grown on the surface of metal fibers. The carbon nanotubes are grown with bush-like nanostructures covered around the micron-fibers or web-like nanostructures crossing between the fibers at different synthetic conditions. Filtration efficiency of CNT-metal-filter was measured and compared with the efficiency of the raw metal filter without CNTs. The developed CNT-metal-filter has higher filtration efficiency without significant difference in pressure drop compared with the conventional metal filter, which is because the carbon nanotubes function as the trap of pollutant nanoparticles.

키워드

참고문헌

  1. Park, C., Engel, E. S., Crowe, A., Gilbert, T. R. and Rodriguez, N. M., 'Use of Carbon Nanofibers in the Removal of Organic Solvents From Water,' Langmuir 16(21), 8050-8056(2000) https://doi.org/10.1021/la9916068
  2. Walters, D. A., Casavant, M. J., Qin, X. C., Huffman, C. B., Boul, P. J., Ericson, L. M., Haroz, E. H., O'Connells, M. J., Smith, K., Colbert, D. T. and Smalley, R. E., 'In-plane-aligned Membranes of Carbon Nanotubes,' Chem. Phys. Lett. 338(1), 14-20 (2001) https://doi.org/10.1016/S0009-2614(01)00072-0
  3. Vander Wal, R. L. and Hall, L. J., 'Carbon Nanotube Synthesis Upon Stainless Steel Meshes,' Carbon 41(4), 659-672(2003) https://doi.org/10.1016/S0008-6223(02)00369-X
  4. Johnson, D. F., Craft, B. J. and Jaffe, S. M., 'Adhered Supported Carbon Nanotubes,' J. Nanopart. Res. 3(1), 63-71(2001) https://doi.org/10.1023/A:1011419628735
  5. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. and Ajayan, P. M., 'Carbon Nanotube Filters,' Nature Mater 3(9), 610-614(2004) https://doi.org/10.1038/nmat1192
  6. Shimoda, H., Fleming, L., Horton, K. and Zhou, O., 'Formation of Macroscopically Ordered Carbon Manotube Membranes by Self-assembly,' Physica B 323(1-4), 135-136(2002) https://doi.org/10.1016/S0921-4526(02)00869-4
  7. Hinds, W. C., 'Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles A Wiley-Interscience Publication,' JOHN WILEY & SONS(1982)
  8. Graham, K., Ouyang, M., Raether, T., Grafe, T., McDonald, B. and Knauf, P., 'Advances in Filtration and Separation Technology,' Proceedings of the American Filtration and Separation Society 16, paper 1 session 14(2002)
  9. Park, S. J. and Lee, D. G., 'A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst- Effect of Reduction Pretreatment and Hydrogen Supply,' Kor. Chem. Eng. Res, 44(6), 563-571(2006)
  10. Friedlander, S. K., 'Smoke, Dust, and Haze, Fundamentals of Aerosol Dynamics,' OXFORD UNIVERSITY PRESS(2000)
  11. Brown, R. C., 'Air Filtration, An Integrated Approach to the Theory and Applications of Fibrous Filters,' PERGAMON PRESS (1993)