암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent

  • 유정균 (한국과학기술원 생명화학공학과) ;
  • 박호석 (한국과학기술원 생명화학공학과) ;
  • 홍원희 (한국과학기술원 생명화학공학과) ;
  • 박종기 (한국에너지기술연구원 화학공정연구센터) ;
  • 김종남 (한국에너지기술연구원 화학공정연구센터)
  • You, Jong Kyun (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Park, Ho Seok (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Hong, Won Hi (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Park, Jongkee (Chemical Process Research Center, KIER) ;
  • Kim, Jong-Nam (Chemical Process Research Center, KIER)
  • 투고 : 2006.01.18
  • 심사 : 2007.01.11
  • 발행 : 2007.06.30

초록

배가스 이산화탄소 처리를 위한 화학적 흡수공정의 새로운 흡수제로서 암모니아수의 적용 가능성을 고찰하였다. 이산화탄소 흡수용량과 침전 발생의 관점에서 적합한 암모니아수 흡수제 농도와 $CO_2$ 부하(loading, $molCO_2/molNH_3$)를 결정하였다. 이를 위하여 전해액에 대한 Pitzer 모델을 이용하여 암모니아 흡수제 농도에 따른 흡수용량과 침전 발생여부를 계산하였다. $5\;molNH_3/kgH_2O$ 이상의 암모니아수 흡수제를 사용하여 기존 아민류 흡수제 이상의 흡수용량은 얻을 수 있었다. 각 암모니아 흡수제 농도에서 $NH_4HCO_3$ 침전의 발생으로 인하여 조업이 제약되는 $CO_2$ 부하를 구하였다. $5{\sim}14\;molNH_3/kgH_2O$의 암모니아 흡수제는 293, 313 K에서 $CO_2$ 부하 0.5 이상에서 침전이 발행하였다. 침전 생성 $CO_2$ 부하값 이하로 흡수탑을 조업함으로써 고농도 암모니아 흡수제가 배가스 $CO_2$ 처리 공정에 사용될 수 있음을 알 수 있었다. 흡수용량과 침전발생을 고려하여 배가스 이산화탄소 처리를 위한 흡수제 최적온도는 암모니아수 농도에 따라 297~312 K이었다.

Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

키워드

참고문헌

  1. Chakma, A., 'Separation of $CO_2$ and TEX>$SO_2$ from Flue Gas Streams by Liquid Membranes,' Energy Convers. Manage., 36(6/9), 405-410(1995) https://doi.org/10.1016/0196-8904(95)00031-8
  2. Yeh, A. C. and Bai, H., 'Comparison of Ammonia and Monoethanolamine Solvents to Reduce $CO_2$ Greenhouse Gas Emissions,' The Science of the Total Environment, 228(2/3), 121-133(1999) https://doi.org/10.1016/S0048-9697(99)00025-X
  3. Bai, H. and Yeh, A. C., 'Removal of $CO_2$ Greenhouse Gas by Ammonia Scrubbing,' Ind. Eng. Chem. Res., 36(6), 2490-2493(1997) https://doi.org/10.1021/ie960748j
  4. Edwards, T. J., Maurer, G., Newman, J. and Prausnitz, J. M., 'Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes,' AIChE J., 24(6), 966-976(1978) https://doi.org/10.1002/aic.690240605
  5. Bieling, V., Rumpf, B. and Maurer, G., 'An Evolutionary Optimization Method for Modeling the Solubility of Ammonia and Carbon Dioxide in Aqueous Solutions,' Fluid Phase Equilibria, 53, 251-259(1989) https://doi.org/10.1016/0378-3812(89)80093-7
  6. Pitzer, K. S., 'Thermodynamics of Electrolytes,' J. Phys. Chem., 77(2), 268-277(1973) https://doi.org/10.1021/j100621a026
  7. Bieling, V., Kurz, F., Rumpf, B. and Maurer, G., 'Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solution of Sodium Sulfate in the Temperature Range 313-393K and Pressure up to 3 MPa,' Ind. Eng. Chem. Res., 34, 1449-1460(1995) https://doi.org/10.1021/ie00043a054
  8. Kurz, F., Rumpf, B. and Maurer, G., 'Vapor-Liquid-Solid Equilibria in the System $NH_3-CO_2-H_2O$ from Around 310 to 470 K: New Experimental Data and Modeling,' Fluid Phase Equilibria, 104, 261-275(1995) https://doi.org/10.1016/0378-3812(94)02653-I
  9. Van Krevelen, D. W., Hoftijzer, P. J. and Huntjens, F. J., 'Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide, and Hydrogen Sulphide,' Rec. Trav. Chim. Pays-bas, 68, 191-216(1949) https://doi.org/10.1002/recl.19490680213
  10. Shen, K.-P. and Li, M.-H., 'Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine,' J. Chem. Eng. Data, 37(1), 96-100(1992) https://doi.org/10.1021/je00005a025
  11. Li, M.-H. and Chang, B.-C., 'Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-amino-2-methyl-1-propanol,' J. Chem. Eng. Data, 39(3), 448-452(1994) https://doi.org/10.1021/je00015a010
  12. Seo, D.-J. and Hong, W. H., 'Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-methyl-1-Propanol,' J. Chem. Eng. Data, 41(2), 258-260(1996) https://doi.org/10.1021/je950197o