• Title/Summary/Keyword: Pitzer Model

Search Result 6, Processing Time 0.021 seconds

Comparison of Ionic Equilibria Analysis of ZnSO4-Fe2(SO4)3-Na2SO4-H2SO4-NaOH-H2O System at 25℃ between Pitzer and Vasil'ev Equation (25℃에서 ZnSO4-Fe2(SO4)3-Na2SO4-H2SO4-NaOH-H2O계에 대해 Pitzer식과 Vasil'ev식에 의한 이온평형해석 비교)

  • Lee, Man-Seung;Lee, Kyoung-Ju;Nam, Sang-Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • To develop an ionic equilibria model applicable to the sulfuric acid leaching solutions of zinc oxide ore, the method of the Pitzer equation and that of the Vasil'ev equation were compared. As the ionic strength of the solution increased to 9 m, the results of ionic equilibria by the Pitzer equation were more accurate than those by Vasil'ev. To simulate the sulfuric acid leaching solutions of zinc oxide ore, the mixed solutions with the various composition of $ZnSO_4-Fe_2(SO_4)_3-Na_2SO_4-H_2SO_4-NaOH-H_2O$ were prepared. The pH values calculated in this study agreed well with those measured at $25^{\circ}C$.

Measurement of Solubilities in the Ternary System NaCl + CaCl2 + H2O and KCl + CaCl2 + H2O at 50℃ (NaCl + CaCl2 + H2O 및 KCl + CaCl2 + H2O 삼성분계에 대한 50℃에서의 용해도 측정)

  • Yang, Ji-Min;Hou, Guang-Yue;Ding, Tian-Rong;Kou, Peng
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • The solubility and the physicochemical property (refractive index) in the NaCl-$CaCl_2$-$H_2O$ and KCl-$CaCl_2$-$H_2O$ systems were determined at $50^{\circ}C$ and the phase diagrams and the diagrams of physicochemical property vs composition were plotted. One invariant point, two univariant curves, and two crystallization zones, corresponding to sodium Chloride (or potassium chloride), dihydrate ($CaCl_2{\cdot}2H_2O$) showed up in the phase diagrams of the ternary systems. The mixing parameters ${\theta}_{M,Ca}$ and ${\Psi}_{M,Ca,Cl}$ (M = Na or K) and equilibrium constant $K_{sp}$ were evaluated in NaCl-$CaCl_2-H_2O$ and KCl-$CaCl_2-H_2O$ systems by least-squares optimization procedure, in which the single-salt Pitzer parameters of NaCl, KCl and $CaCl_2$ ${\beta}^{(0)}$, ${\beta}^{(1)}$, ${\beta}^{(2)}$ and $C^{\Phi}$ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

Scaling predictions in seawater reverse osmosis desalination

  • Hchaichi, Houda;Siwar, Saanoun;Elfil, Hamza;Hannachi, Ahmed
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Simulations were conducted to predict supersaturation along Reverse Osmosis (RO) modules for seawater desalination. The modeling approach is based on the use of conservation principles and chemical equilibria equations along RO modules. Full Pitzer ion interactive forces model for concentrated solutions was implement to calculate activity coefficients. An average rejection rate for all ionic species was considered. Supersaturation has been used to assess scaling. Supersaturations with respect to all calcium carbonate forms and calcium sulfate were calculated up to 50% recovery rate in seawater RO desalination. The results for four different seawater qualities are shown. The predictions were in a good agreement with the experimental results.

Equilibrium calculations for HyBRID decontamination of magnetite: Effect of raw amount of CuSO4 on Cu2O formation

  • Lee, Byung-Chul;Kim, Seon-Byeong;Moon, Jei-Kwon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2543-2551
    • /
    • 2020
  • Calculations of chemical equilibrium for multicomponent aqueous systems of the HyBRID dissolution of magnetite were performed by using the HSC Chemistry. They were done by using a Pitzer-based aqueous solution model with the recipe of raw materials in experiments conducted at KAERI. The change in the amounts of species and ions and the pH values of the solution at equilibrium was observed as functions of temperature and raw amount of CuSO4. Precipitation of Cu2O occurred at a large amount of CuSO4 added to the solution, while no precipitation of Cu(OH)2 was found at any amounts of CuSO4. The E-pH diagrams for Cu were constructed at various Cu concentrations to provide the effect of the Cu concentration on the pH values at boundaries where the coexistence of Cu+ ion and Cu2O solid occurred. To prevent Cu+ ions from being precipitated to Cu2O, the raw amount of CuSO4 should be adjusted so that the pH value of the solution from the equilibrium calculation is less than that from the E-pH diagram. We provided guidelines for the raw amount of CuSO4 and the pH value of the solution, which prevent the formation of Cu2O precipitates in the HyBRID dissolution experiments for magnetite.

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.