어류 병원성 세균 Edwardsiella tarda의 형질전환 및 재조합 ghost 세균에서의 E-lysis 유전자의 전사 발현 특징

Transformation of Edwardsiella tarda and Transcriptional Characteristics of E-lysis Gene in Recombinant Bacterial Ghosts

  • Kwon, Se Ryun (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Aquaculture, Pukyong National University)
  • 투고 : 2007.03.30
  • 심사 : 2007.05.05
  • 발행 : 2007.06.30

초록

어류 에드워드감염증에 대한 예방 재조합 ghost 백신을 개발하기 위한 연구의 일환으로 어류 병원성 세균인 Edwardsiella trada를 대상으로 플라스미드 형질전환을 실시하고 형질전환 안정성을 평가하였으며, 형질 도입된 재조합 ghost 세균의 E-lysis 유전자 발현을 분석하였다. E. tarda를 대상으로 한 ghost 유도는 대장균에 비해 상대적으로 장시간의 반응 시간이 요구되며 lysis의 개시가 지연된 점을 고려 시 발현된 E protein의 용해 능력 또는 E-gene의 전사발현 양이 E. tarda에서 다소 약화되는 것으로 나타났다. 그러나 대장균에 비해 ghost 유도 속도가 다소 낮음에도 불구하고 반응이 완성되었을 시점에서의 E. tarda의 ghost 효율은 대장균과 전혀 차이가 없이 99.99% 이상의 유도효율을 나타내었다.

Edwardsiella tarda, a gram (-) pathogen causing edwardsiellosis in farmed fish, was transformed via electroporation with a plasmid expression vector driving the PhiX174 E-lysis gene under the transcriptional control by lambda PR regulatory sequence. The persistent maintenance of the plasmid vector in recombinant E. tarda was found in numerous subculture procedures over up to 6 months without any adverse effect on the original copy number of plasmids. Comparative examination based on semi-quantitative RT-PCR analysis on transcriptional efficiency of E-lysis gene between recombinant E. coli and E. tarda indicated that promoter strength and induction capacity of bacterial ghosts would be retarded in E. tarda as compared to the E. coli. However, the completeness of induction for bacterial ghosts in E. tarda was the same with E. coli, in which at least 99.99% of induction rate was possible and further the viability of recombinant bacteria was completely eliminated by a post-induction procedure including washing and freeze drying lyophilization.

키워드

과제정보

연구 과제 주관 기관 : 해양수산부

참고문헌

  1. Borukhov, S., J. Lee and O. Laptenko. 2005. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol. Microbiol., 55 : 1315-1324 https://doi.org/10.1111/j.1365-2958.2004.04481.x
  2. Browning, D.F. and S.J. Busby. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol., 2 : 57-65 https://doi.org/10.1038/nrmicro787
  3. Haidinger, W., U.B. Mayr, M.P. Szostak, S. Resch and W. Lubitz. 2003. Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl. Environ. Microbiol., 69 : 6106-6113 https://doi.org/10.1128/AEM.69.10.6106-6113.2003
  4. Hensel, A., L.A.G. van Leengoed, M.P. Szostak, H. Windt, H. Weissenböck, N. Stockhofe-Zurwieden, A. Katinger, M. Stadler, M. Ganter, S. Bunka, R. Papst and W. Lubitz. 1996. Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model. J. Biotechnol., 44 : 171-181 https://doi.org/10.1016/0168-1656(95)00150-6
  5. John, M., T.I. Crean, S.B. Calderwood and E.T. Ryan. 2000. In vitro and in vivo analyses of constitutive and in vivo-induced promoters in attenuated vaccine and vector strains of Vibrio cholerae. Infect. Immun., 68 : 1171-1175 https://doi.org/10.1128/IAI.68.3.1171-1175.2000
  6. Kwon, S.R., Y.K. Nam, S.K. Kim, D.S. Kim and K.H. Kim. 2005. Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E. Aquaculture, 250 : 16-21 https://doi.org/10.1016/j.aquaculture.2005.02.052
  7. Kwon, S.R., Y.K. Nam, S.K. Kim and K.H. Kim. 2006. Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish Shellfish Immunol., 20 : 621-626 https://doi.org/10.1016/j.fsi.2005.08.005
  8. Plumb, J.A. 1999. Edwardsiella septicaemias. In: Woo, P.T.K., Bruno, D.W. (Eds.), Fish Diseases and Disorders Vol. 3. Viral, Bacterial and Fungal Infections. CAB International, pp. 479-521
  9. Szostak, M.P., A. Hensel, F.O. Eko, R. Klein, T. Auer, H. Mader, A. Haslberger, S. Bunka, G. Wanner and W. Lubitz. 1996. Bacterial ghosts: non living candidate vaccines. J. Biotechnol., 44 : 161-170 https://doi.org/10.1016/0168-1656(95)00123-9
  10. Thune, R.L., L.A. Stanley and R.K. Cooper. 1993. Pathogenesis of gram negative bacterial infections in warm water fish. Annu. Rev. Fish Dis., 3 : 37-68 https://doi.org/10.1016/0959-8030(93)90028-A
  11. Tijhaar, E.J., Y. Zheng-Xin, J.A. Karlas, T.F. Meyer, M.J. Stukart, A.D. Osterhau and F.R. Mooi. 1994. Construction and evaluation of an expression vector allowing the stable expression of foreign antigens in a Salmonella typhimurium vaccine strain. Vaccine, 12 : 1004-1011 https://doi.org/10.1016/0264-410X(94)90336-0
  12. Witte, A., G. Wanner and W. Lubitz. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol., 157 : 381-388 https://doi.org/10.1007/BF00248685