한국산업정보학회논문지 (Journal of Korea Society of Industrial Information Systems)
- 제12권4호
- /
- Pages.65-73
- /
- 2007
- /
- 1229-3741(pISSN)
협력적 필터링 알고리즘의 예측 선호도 순위 일치와 ToP-N 추천에 관한 연구
A Study on the Relation of Top-N Recommendation and the Rank Fitting of Prediction Value through a Improved Collaborative Filtering Algorithm
초록
본 연구는 추천시스템에서 협력적 필터링 알고리즘인 이웃기반의 협력적 필터링 알고리즘과 대응평균 알고리즘의 선호도 예측 결과를 이용하여 예측결과의 순위 일치성과 실제 고객에 상품 추천인 Top-N 추천의 정확도에 대하여 연구하였다. 연구결과 대응평균 알고리즘에 의한 선호도 예측 정확도의 순위 일치성과 예측치를 이용한 Top-N 추천의 정확도가 기존의 이웃기반의 협력적 필터링 알고리즘의 결과보다 우수함을 알 수 있었다. 이는 협력적 필터링 추천시스템에서 대응평균 알고리즘을 이용한 선호도 예측 결과를 이용하여 고객에게 상품추천을 하는 것이 이웃기반의 협력적 필터링 알고리즘을 이용하는 것보다 더 효과적이며 추천시스템에 대한 고객의 만족을 향상시킬 수 있을 것으로 기대된다.
This study devotes to compare the accuracy of Top-N recommendations of items transacted on the web site for customers with the accuracy of rank conformity of the real ratings with estimated ratings for customers preference about items generated from two types of collaborative filtering algorithms. One is Neighborhood Based Collaborative Filtering Algorithm(NBCFA) and the other is Correspondence Mean Algorithm(CMA). The result of this study shows the accuracy of Top-N recommendations and the rank conformity of real ratings with estimated ratings generated by CMA are better than that of NBCFA. It would be expected that the customer's satisfaction in Recommender System is more improved by using the prediction result from CMA than NBCFA, and then Using CMA in collaborative filtering recommender system is more efficient than using NBCFA.
키워드