시멘트/Fe(II) 시스템에서의 TCE 분해 기작

Degradation Mechanisms of TCE in Cement/Fe(II) Systems

  • Lee, Yun-Mo (Department of Civil Engineering, Hanyang University) ;
  • Kang, Wan-Hyup (Department of Civil Engineering, Hanyang University) ;
  • Choi, Won-Ho (Department of Civil Engineering, Hanyang University) ;
  • Hwang, In-Sung (Department of Civil and Environmental engineering, Pusan National University) ;
  • Park, Joo-Yang (Department of Civil Engineering, Hanyang University)
  • 발행 : 2007.07.31

초록

본 연구는 시멘트/Fe(II) 시스템의 TCE 분해 기작에 관한 것이다. 회분식 슬러리 실험을 통해 시멘트/Fe(II) 시스템 내에서 선별된 이온들의 거동을 조사하였다. 시멘트/Fe(II) 시스템에서 주입된 Fe(II)은 반응시간 12시간 이내에 대부분 고체상으로 흡착되었으며 Fe(II)와 함께 주입된 sulfate 역시 12시간 이내에 90% 정도 고체상으로 이동하였다. 시멘트/Fe(II) 시스템의 Fe(II)-Fe(III) (수)산화물 형성을 모사한 적철석/CaO/Fe(II) 시스템의 TCE 분해능 실험결과 시멘트/Fe(II)에 상응하는 분해속도를 보였다. 칼슘산화물은 시멘트 수화물의 주요 구성성분의 하나로서 시멘트 내에 60% 정도 함유되어 있으며 제한된 조건에서 반응성을 갖는 것으로 알려져 있다. 적철석은 시멘트에 포함되어 있는 철산화물을 모의한 것으로 선별실험을 통해 결정하였다. 적철석/CaO/Fe(II) 시스템 내에서의 Fe(II)과 sulfate의 초기 거동은 시멘트/Fe(II) 시스템과 거의 유사하게 나타났다. 적철석/CaO/Fe(II) 시스템을 이용한 TCE 분해 kinetic 실험결과와 선별된 이온들인 Fe(II)과 $SO_4^{2-}$의 초기 거동으로 볼 때 시스템 내에서 green rust와 같은 Fe(II)-Fe(III) 혼합 광물이 형성되는 것으로 판단된다. 따라서 시멘트/Fe(II) 시스템의 TCE 분해는 시멘트에 흡착된 Fe(II)이 반응성을 갖는 Fe(II)-Fe(III) (수)산화물로의 변환을 통한 기작을 갖는 것으로 판단된다.

This study investigated the dechlorination mechanisms of TCE by Fe(II) associated with cement. Batch slurry experiments were peformed to investigate the behaviors of selected ions; Fe(II), Fe(III), $Ca^{2+}$, $SO_4^{2-}$ in cement/Fe(II) system. The kinetic experiments of TCE in cement/Fe(II) systems showed that injected Fe(II) was mostly sorbed on cement within 0.5 day and 90% of injected 200 mM sulfate was sorbed on cement within 0.5 day when $[TCE]_0$ = 0.25 mM and $[Fe(II)]_0$ = 200 mM. The kinetic experiments of TCE in hematite/CaO/Fe((II) systems were conducted for simulation of cement/Fe(II) system. Calcium oxide that is one of the major components in cement hydration reactions or has a reactivity in limited conditions. Hematite assumed the ferric iron oxide component of cement. The reactivities observed in hematite/CaO/Fe(II) system were comparable to those reported for cement/Fe(II) systems containing similar molar amounts of Fe(II). The behavior of Fe(II) and $SO_4^{2-}$ sorbed on solid phase at an early stage of reaction in hematite/CaO/Fe(II) system was similar to that of cement/Fe(II) system. Ferric ion was released from hematite at an early period of reaction at low pH. The experimental evidence of kinetic test using hematite/CaO/Fe(II) system implies that the reactive reductant is a mixed-valent Fe(II)-Fe(III) mineral, which may be similar to green rust. Fe(II) sorbed on cement can be converted to new mineral phase having a reactivity such as Fe(II)-Fe(III) (hydr)oxides in cement/Fe(II) systems.

키워드

참고문헌

  1. Klausen, J., Trober, S. P., Haderlein, S. B., and Schwarzenbach, R. P., 'Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions,' Environ. Sci. Technol., 29, 2396-2404(1995) https://doi.org/10.1021/es00009a036
  2. Pecher, K., Haderlein, S. B., and Schwarzenbach, R. P., 'Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides,' Environ. Sci. Technol., 36, 1734-1741(2002) https://doi.org/10.1021/es011191o
  3. Cui, D. and Eroksen, T. E., 'Reduction of Pertechnetate in Solution by Heterogeneous Electron Transfer from Fe(II)-Containing Geological Material,' Environ. Sci. Technol., 30, 2263-2269(1996) https://doi.org/10.1021/es950627v
  4. Klausen, J., Trober, S. P., Haderlein, S. B., and Schwarzenbach, R. P., 'Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions,' Environ. Sci. Technol., 29, 2396-2404(1995) https://doi.org/10.1021/es00009a036
  5. Liger, E., Charlet, L., and Cappellen, P. V., 'Surface catalysis of uranium(VI) reduction by iron(II),' Geochim. Cosmochim. Acta, 63, 2939-2955(1999) https://doi.org/10.1016/S0016-7037(99)00265-3
  6. Pecher, K., Haderlein, S. B., and Schwarzenbach, R. P., 'Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides,' Environ. Sci. Technol., 36, 1734-1741(2002) https://doi.org/10.1021/es011191o
  7. Elsner, M., Schwarzenbach, R. P., and Haderlein, S. B., 'Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants,' Environ. Sci. Technol., 38, 799-807(2004) https://doi.org/10.1021/es0345569
  8. Jeon, B. H., Dempsey, B. A., and Burgos, W. D., 'Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides,' Environ. Sci. Technol., 37, 3309-3315(2003) https://doi.org/10.1021/es025900p
  9. Jeon, B. H., Dempsey, B. A., Burgos, W. D., and Royer, R. A., 'Reactions of ferrous iron with hematite,' Colloids Surface A, 191, 41-45(2001) https://doi.org/10.1016/S0927-7757(01)00762-2
  10. Lee, W. and Batchelor, B., 'Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust,' Environ. Sci. Technol., 36, 5348-5354(2002) https://doi.org/10.1021/es0258374
  11. Hwang, I. and Batchelor, B., 'Reductive dechlorination of tetrachloroethylene by Fe(II) in cement sluries,' Environ. Sci. Technol., 34, 5017-5022(2000) https://doi.org/10.1021/es991377b
  12. Hwang, I. and Batchelor, B., 'Reductive dechlorination of tetrachloroethylene in soils by Fe(II) based degradative solidification/stabilization,' Environ. Sci. Technol., 35, 3792-3797(2001) https://doi.org/10.1021/es010619g
  13. Hwang, I., Park, H. J., Kang, W. H., and Park, J. Y., 'Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes,' J. Hazard. Mater., 118, 103-111(2005) https://doi.org/10.1016/j.jhazmat.2004.10.002
  14. James W. Ball, D. Kirk Nordstrom, R. Blaine Mc-Cleskey, and Tanya Bangthanh To, 'A new method for the direct determination of dissolved Fe(III) concentration in acid mine waters,' Environ. Sci. Technol., 33(5), 807-813(1999) https://doi.org/10.1021/es980684z
  15. Taylor, H. F. W., Cement Chemistry, 2nd ed., Thomas Telford(1997)
  16. Hofstetter, T. B., Schwarzenbach, R. P., and Haderlein, S. B., 'Reactivity of Fe(II) species associated with clay minerals,' Environ. Sci. Technol., 37, 519-528(2003) https://doi.org/10.1021/es025955r
  17. Erbs, M., Hansen, H. C. B., and Olsen, C. E., 'Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate(green rust),' Environ. Sci. Technol., 33, 307-311(1999) https://doi.org/10.1021/es980221t
  18. Maithreepala, R. A. and Doong, R. A., 'Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite,' Environ. Sci. Technol., 38, 260-268(2004) https://doi.org/10.1021/es034428k
  19. Hall, A., Harrowfield, J., HART, L. J., and Mccormick, P., 'Mechanochemical Reaction of DDT with Calcium Oxide,' Environ. Sci. Technol., 30(12), 3401-3407(1996) https://doi.org/10.1021/es950680j