DOI QR코드

DOI QR Code

NONEXISTENCE OF A CREPANT RESOLUTION OF SOME MODULI SPACES OF SHEAVES ON A K3 SURFACE

  • 발행 : 2007.01.31

초록

Let $M_c$ = M(2, 0, c) be the moduli space of O(l)-semistable rank 2 torsion-free sheaves with Chern classes $c_1=0\;and\;c_2=c$ on a K3 surface X, where O(1) is a generic ample line bundle on X. When $c=2n\geq4$ is even, $M_c$ is a singular projective variety equipped with a holomorphic symplectic structure on the smooth locus. In particular, $M_c$ has trivial canonical divisor. In [22], O'Grady asks if there is any symplectic desingularization of $M_{2n}$ for $n\geq3$. In this paper, we show that there is no crepant resolution of $M_{2n}$ for $n\geq3$. This obviously implies that there is no symplectic desingularization.

키워드

참고문헌

  1. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto,1997) (1998), 1-32
  2. A. Beauville, Varietes Kahleriennes dont la premiere classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755-782 https://doi.org/10.4310/jdg/1214438181
  3. V. Danilov and G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge- Deligne numbers, Math. USSR-Izv. 29 (1987), no. 2, 279-298 https://doi.org/10.1070/IM1987v029n02ABEH000970
  4. J. Denef and F. Loeser, Germs of arcs on singular varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232 https://doi.org/10.1007/s002220050284
  5. D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, 1995
  6. D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math.(2) 106 (1977), no. 1, 45-60 https://doi.org/10.2307/1971157
  7. L. Gottsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193-207 https://doi.org/10.1007/BF01453572
  8. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience Publication, John Wiley & Sons, 1978
  9. A. Grothendieck, Sur quelques points dalgebre homologique, Tohoku Math. J.(2) 9 (1957), 119-221 https://doi.org/10.2748/tmj/1178244839
  10. A. Grothendieck, Techniques de construction et theoremes d'existence en geometrie algebrique. IV. Les schemas de Hilbert, Seminaire Bourbaki 6 Exp. No. 221 (1995), 249-276
  11. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52. Sprin-ger- Verlag, 1977
  12. D. Huybrechts and M. Lehn, The Geometry of moduli spaces of sheaves, A Publication of the Max-Planck-Institut fur Mathematik, Bonn, 1997
  13. D. Kaledin and M. Lehn, Local structure of hyperkAhler singularities in O'Grady's examples, math.AG/0405575
  14. Y.-H. Kiem, The stringy E-function of the moduli space of rank 2 bundles over a Rie- mann surface of genus 3, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1843-1856 https://doi.org/10.1090/S0002-9947-02-03125-2
  15. Y.-H. Kiem, On the existence of a symplectic desingularization of some moduli spaces of sheaves on a K3 surface, Compos. Math. 141 (2005), no. 4, 902-906 https://doi.org/10.1112/S0010437X05001272
  16. Y.-H. Kiem and J. Li, Desingularizations of the moduli space of rank 2 bundles over a curve, Math. Ann. 330 (2004), no. 3, 491-518 https://doi.org/10.1007/s00208-004-0557-7
  17. F. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math.(2) 122 (1985), no. 1, 41-85 https://doi.org/10.2307/1971369
  18. I. G. Macdonald, The Poincare polynomial of a symmetric product. Proc. Cambridge Philos. Soc. 58 (1962), 563-568 https://doi.org/10.1017/S0305004100040573
  19. S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), no. 1, 101-116 https://doi.org/10.1007/BF01389137
  20. K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3. I, math. AG/9708009
  21. K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3. II, math.AG/9805099
  22. K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49-117
  23. C. Vafa and E. Witten, A strong coupling test of S-duality. Nuclear Phys. B 431 (1994), no. 1-2, 3-77 https://doi.org/10.1016/0550-3213(94)90097-3
  24. C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge studies in Advanced Mathematics 76, Cambridge University Press, 2002
  25. C. Voisin, Hodge theory and complex algebraic geometry. II, Cambridge studies in Advanced Mathematics 77, Cambridge University Press, 2002
  26. K. Yoshioka, Twisted stability and Fourier-Mukai transform. I, Compositio Math. 138 (2003), no. 3, 261-288 https://doi.org/10.1023/A:1027304215606

피인용 문헌

  1. A Study on the Effects of the Mobile Telecommunication Quality on Customer Satisfaction and Customer Loyalty. -Focus on Moderation effect of Switching Barrier- vol.44, pp.4, 2016, https://doi.org/10.7469/JKSQM.2016.44.4.921
  2. NEW SYMPLECTIC V-MANIFOLDS OF DIMENSION FOUR VIA THE RELATIVE COMPACTIFIED PRYMIAN vol.18, pp.10, 2007, https://doi.org/10.1142/S0129167X07004503