DOI QR코드

DOI QR Code

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I

  • Kim, Dae-Yeoul (Department of Mathematics and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Koo, Ja-Kyung (Department of Mathematics Korea Advanced Institute of Science and Technology)
  • 발행 : 2007.01.31

초록

Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q=e^{{\pi}i\tau}$. In this article, we obtain algebraic numbers from the 130 identities of Rogers-Ramanujan continued fractions investigated in [28] and [29] by using Berndt's idea ([3]). Using this, we get special transcendental numbers. For example, $\frac{q^{1/8}}{1}+\frac{-q}{1+q}+\frac{-q^2}{1+q^2}+\cdots$ ([1]) is transcendental.

키워드

참고문헌

  1. C. Adiga and T. Kim, On a continued fraction of Ramanujan, Tamsui Oxf. J. Math. Sci. 19 (2003), no. 1, 55-65
  2. K. Barre-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), no. 1-3, 1-9 https://doi.org/10.1007/s002220050044
  3. B. C. Berndt, Ramanujan's Notebooks III, Springer, 1991
  4. B. C. Berndt, Ramanujan's Notebooks V, Springer, 1998
  5. B. C. Berndt, H. H. Chan, and L.-C. Zhang, Ramanujan's remarkable product of theta- functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583-612 https://doi.org/10.1017/S0013091500024032
  6. B. C. Berndt and A. Yee, On the generalized Rogers-Ramanujan continued fraction, Ramanujan J. 7 (2003), no. 1-3, 321-331 https://doi.org/10.1023/A:1026215700375
  7. D. Bertrand, Series d'Eisenstein et transcendence, Bull. Soc. Math. France 104 (1976), no. 3, 309-321
  8. D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), no. 4, 339-350 https://doi.org/10.1023/A:1009749608672
  9. H. H. Chan and Y. L. Ong, On Eisenstein series and $\sum_{m,n}^{\infty}=_{-{\infty}}q^{m^2+mn+2n^2}$, Proc. Amer. Math. Soc. 127 (1999), no. 6, 1735-1744 https://doi.org/10.1090/S0002-9939-99-04832-7
  10. D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa, Transcendence of Rogers- Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 140-142 https://doi.org/10.3792/pjaa.73.140
  11. A. B. Ekin, The rank and the crank in the theory of partitions, Ph. D Thesis, University of Sussex, 1993
  12. L. Euler, Introduction to Analysis of the In¯nite, Springer-Verlag, 1988
  13. N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical So- ciety, 1988
  14. M. D. Hirschhorn, An identity of Ramanujan, and application, in 'q-series from a contemporary perspective', Contemp. Math. 254 (2000), 229-234 https://doi.org/10.1090/conm/254/03956
  15. A. Hurwitz, Uber die Entwickelungscoefficienten der lemniscatischen Funktionen., Math. Ann. 51 (1898), no. 2, 196-226 https://doi.org/10.1007/BF01453637
  16. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer- Verlag, 1990
  17. D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116 https://doi.org/10.4064/aa100-2-1
  18. D. Kim and J. K. Koo, Algebraic numbers, transcendental numbers and elliptic curves derived from in¯nite products, J. Korean Math. Soc. 40 (2003), no. 6, 977-998 https://doi.org/10.4134/JKMS.2003.40.6.977
  19. O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92 https://doi.org/10.7146/math.scand.a-10492
  20. S. Lang, Elliptic Functions, Addison-Wesley, 1973
  21. V. A. Lebesgue, Sommation de quelques series, J. Math. Pure. Appl. 5 (1840), 42-71
  22. D. Mumford, Tata Lectures on Theta I, Birkhauser Boston, Inc., Boston, MA, 1983
  23. S. Ramanujan, Collected Papers, Chelsea, 1962
  24. S. Ramanujan, Modular equations and approximations to ${\pi}$ , Quart. J. Math (Oxford) 45 (1914), 350-372
  25. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343 https://doi.org/10.1112/plms/s1-25.1.318
  26. M. Rosen, Abel's theorem on the lemniscate, Amer. Math. Monthly 88 (1981), no. 6, 387-395 https://doi.org/10.2307/2321821
  27. T. Schneider, Transzendenzeigenschaften elliptischer Funktionen, J. Reine Angew. Math. 14 (1934), 70-74
  28. A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 1-122
  29. L. J. Slater, Further identies of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167 https://doi.org/10.1112/plms/s2-54.2.147
  30. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Press, 1962

피인용 문헌

  1. REMARKS FOR BASIC APPELL SERIES vol.31, pp.4, 2009, https://doi.org/10.5831/HMJ.2009.31.4.463
  2. DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES vol.49, pp.4, 2012, https://doi.org/10.4134/BKMS.2012.49.4.693
  3. A note on the transcendence of infinite products vol.62, pp.3, 2012, https://doi.org/10.1007/s10587-012-0053-2