Distribution and Extraction Condition of Endoprotease and Exopeptidase from Viscera of Illex argentinus

원양산 오징어(Illex argentinus) 내장의 endoprotease 및 exopeptidases의 분포 및 추출조건 검토

  • Kim, Hye-Suk (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University)
  • 김혜숙 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 허민수 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생명과학부/해양산업연구소)
  • Published : 2007.12.31

Abstract

For the effective use of squid processing by-products as food resources, the distribution and the extraction condition of endoprotease and exopeptidase from viscera of Illex argentinus were investigated. Crude protein and lipid contents of viscera of Illex argentinus were 17.2% and 16.9%, respectively. Regardless of kinds of extraction solution (water, 1% NaCl, 1% KCl and 1% NaCl- KCl) and extraction times (1-20 h), endoprotease activities from viscera of Illex argentinus on Hb, casein and azocasein (pH 6.0) were higher than those on casein and azocasein of the other pHs, thus indicating that the distribution of protein hydrolysing protease is distinctive in the weak acid pH range. Exopeptidase activities against LeuPNA and ArgPNA at pH 7.5 were relatively higher than endoprotease activity of the same pH. The results suggested that exopeptidase among proteases from viscera of Illex argentinus was reasonable for application in food industry compared to endoprotease. The activity in enzymes from viscera of Illex argentinus was the highest in the exopeptidase extracted with deionized distilled water at room temperature for 6-8 h. The optimal reaction conditions of crude enzyme from viscera of Illex argentinus were 7.5 for pH and $50-55^{\circ}C$ for temperature.

오징어 가공 부산물인 오징어 내장을 효소제재와 같이 식품가공소재로 이용하기 위하여 오징어 내장의 endoprotease와 exopeptidase의 분포 특성에 대하여 살펴보았다. 오징어 내장은 조효소가 함유되어 있으리라 추정되는 단백질이 17.2%를 차지하였고, 또한, 이물질로 제거하여야 되는 조지방의 경우도 16.9%로 다량 차지하였다. 오징어 내장 조효소의 활성을 천연기질(azocasein)과 합성기질(LeuPNA 및 ArgPNA)로 나누어 살펴 본 결과 추출 용매(탈이온수, 1% NaCl, 1% KCl 및 1% NaCl-KCl 혼합용액)및 추출 시간(1-20시간)에 관계없이 전 조 효소가 동일 pH에서 천연기질의 분해활성에 비하여 상대적으로 합성기질의 분해활성(pH7.5)이 높아, 오징어 내장으로부터 효소를 분리하여 이용하고자 하는 경우 exopeptidase를 분리하여 이용하는 것이 적절하리라 판단되었다. 오징어 내장으로부터 exopeptidase를 분리하여 이용하고자 하는 경우 탈이온수를 이용하여 6-8시간 동안 추출하는 것이 가장 적절하리라 판단되었다. 오징어 내장 조효소의 최적 pH와 온도는 pH 7.5 및 $50-55^{\circ}C$범위로 판단되었다.

Keywords

References

  1. Okutani, T. (2005) Cuttlefishes and Squid of the World. Seizando. Tokyo. pp. 198
  2. Ministry of Maritime Affairs and Fisheries (2007) http://badasori.momaaf.go.kr/matrix/momaf/trans/tratns.jsp
  3. Bihan, G. L., Perrin, A. and Koueta, N. (2007) Effect of different treatments on the quality of cuttlefish (Sepia officinalis L.) viscera. Food Chemistry. 104, 345-352 https://doi.org/10.1016/j.foodchem.2006.11.056
  4. Sukarno. K., Takahashi, M. Hatano and Sakurai, Y. (1996) Lipase from neon flying squid hepatopancreas: purification and properties. Food Chem. 57, 515-521 https://doi.org/10.1016/S0308-8146(96)00044-1
  5. Okzumi, M. and Huzii, T. (2000) Nutrition.Function Components of Squid. Seizando. Tokyo. pp. 135-139
  6. Kim, J. S., Kim, J. G. and Cho, S. Y. (1997) Screening for the raw material of gelatin from the skins of some pelagic fishes and squid. J. Korean Fish. Soc. 30, 55-61
  7. Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N. and Suzuki, N. (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry. 72, 425-429 https://doi.org/10.1016/S0308-8146(00)00249-1
  8. Cho, S. Y., Joo, D. S., Park, S. H., Kang, H. J. and Jeon, J. K. (2000) Change of taurine content in squid meat during squid processing and taurine content in the squid processing waste water. J. Korean. Fish. Soc. 33, 51-54
  9. Kishimura, H., Saeki, H. and Hayashi, K. (2001) Isolation and characteristics of trypsin inhibitor from the hepatopancreas of a squid (Todarodes pacificus). Comparative Biochemistry and Physiology Part B. 130, 117-123 https://doi.org/10.1016/S1096-4959(01)00415-8
  10. Raksakulthai, R. and Haard, N. F. (2001) Purification and characterization of a carboxypeptidase from squid hepatopancrease (Illex illecebrosus). J. Agric. Food Chem. 49, 5019-5030 https://doi.org/10.1021/jf010320h
  11. Raksakulthai, R., Rosenberg, M. and Haard, N. F. (2002) Accelerated cheddar cheese ripening with an aminopeptidase fraction from squid hepatopancreas. J. Food Sci. 67, 923-929 https://doi.org/10.1111/j.1365-2621.2002.tb09429.x
  12. Kolodziejska, I., Pacana, J., Sikorski, Z. E. (1992) Effect of squid liver extract on proteins and on the texture of cooked squid mantle. J. Food Biochem. 16, 141-150 https://doi.org/10.1111/j.1745-4514.1992.tb00442.x
  13. Kim, S. M. (1999) Accelerating effect of squid viscera on the fermentation of Alaska pollack scrap sauce. J. Food Sci. Nutr. 4, 103-106
  14. Raksakulthai, N., Lee Y. Z. and Harrd, N. F. (1986) Effect of enzyme supplements on the production of fish sauce from male capelin (Mallotus villosus). Can. Inst. Food Sci. Technol. J. 19, 28-33 https://doi.org/10.1016/S0315-5463(86)71377-1
  15. Dawson, R. M. C., Elliot, D. C., Elliot, W. H. and Jones, K. M. (1986) Data for biochemical research, 3rd ed., Oxford Univ. Press, Oxford, pp. 417-441
  16. AOAC. (1990) Official methods of analysis (15th ed). Washington, DC: Association of Official Analytical Chemists
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  18. Garcia-Carreno, F. L. and Haard, N. F. (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem. 17, 97-113 https://doi.org/10.1111/j.1745-4514.1993.tb00864.x
  19. Starky, P. M. (1977) Elastase and cathepsin G: the serine proteinases of human neutrophil leucocytes and spleen. In: Proteinases in Mammalian Cells and Tissues, Barrett, A. J. ed. North-Holland Publishing Co., Amsterdam, 57-89
  20. Anson, M. I. (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Physiol. 22, 79-89
  21. Kim, E. M., Cho, J. H., Oh, S. W. and Kim, Y. M. (1997) Characteristics of squid viscera oil. J. Korean Fish. Soc. 30, 595-600
  22. Suyama, M,, Konosu, S., Hamada, M. and Okuda, Y. (1983) Use of squid. Kouseiya-kouseikaku, pp. 52-100
  23. Seo, J. H., Jeong, Y. J., Lee, G. D. and Lee, M. H. (1999) Monitoring characteristics of protease isolated from squid viscera. J. the east asian of dietary life. 9, 195-199
  24. Charney, J. and Tomarelli, R. M. (1947) A colorimetric method for determination of the proteolytic activity of duodenal juice. J. Bio. Chem. 171, 501-505
  25. Heu, M. S. and Ahn, S. H. (1999) Development and fractionation of proteolytic enzymes from an inedible seafood product. J. Korean Fish. Soc. 32, 458-465
  26. Shamsuzzaman, K. and Haard, N. F. (1984) Purification and characterization of chymotrypsin-like protease from the gastric mucosa of harp seal, Pagophilus groenlandicus. Can. J. Biochem. Cell Biol. 62, 699-708 https://doi.org/10.1139/o84-091
  27. Barrett A. J. and Kirschke, H. (1981) Cathepsin B, Cathepsin H, and Cathepsin L. In Methods in Enzymology, Vol. 80. L. Lorand ed Acedemic Press, Inc., New York, pp. 535-561
  28. Heu, M. S., Kim, H. R., Cho, D. M., Godber, J. S. and Pyeun, J. H. (1997) Purification and characterization of cathepsin Llike enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem, Physiol. 118B, 523-529
  29. Yoshinaka, R., Sato, M. and Ikeda, S. (1981) Distribution of trypsin and chymotrypsi, and their zymogens in digestive system of catfish. Bull. Jap. Soc. Sci. Fish. 47, 1615-1618 https://doi.org/10.2331/suisan.47.1615
  30. Smith, L. S. (1989) Digestive functions in teleost fishes. In Fish Nutrition, J. E. Halver ed. Academic Press, Inc., New York, pp. 387-389
  31. Chen, C. S., Tsao, C. Y. and Jiang, S. T. (1989) Purification and characterization of proteases from the viscera of mikfish, Chanos chanos. J. Food Biochem. 12, 269-288 https://doi.org/10.1111/j.1745-4514.1988.tb00379.x
  32. Heu M. S., Kim, H. R. and Pyeun, J. H. (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp. Biochem. Physiol. 112B, 557-567
  33. Erlanger, B. F., Cooper, A. G. and Bendich, A. J. (1964) On the heterogeneity of three-times-crystallized a-chymotrypsin. Biochemistry. 3, 1880-1883 https://doi.org/10.1021/bi00900a015