DOI QR코드

DOI QR Code

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea

국내 항타강관말뚝 설계법의 신뢰성평가

  • 허정원 (전남대학교 건설환경공학부) ;
  • 박재현 (한국건설기술연구원 토질및기초연구실) ;
  • 김경준 (노스캐롤라이나 주 교통국, 동부지역 지반공학부) ;
  • 이주형 (한국건설기술연구원 토질및기초연구실) ;
  • 곽기석 (한국건설기술연구원 토질및기초연구실)
  • Published : 2007.12.31

Abstract

As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

본 논문에서는 국내 하중저항계수설계법 개발의 일환으로 구조물기초설계기준에 적용된 항타강관말뚝의 두 정역학적 지지력공식에 대하여 대표적인 신뢰성분석기법인 일차신뢰도법(FORM)과 몬테카를로 시뮬레이션(MCS)을 이용한 강도 높은 신뢰성해석을 수행하고 그 신뢰성수준을 평가하였다. 두 정역학설계법에 대한 저항편향계수는 대표 측정지지력과 설계지지력을 비교함으로써 평가하였다. 국내 정재하시험 및 지반조사 자료를 수집하여 말뚝의 측정 극한지지력을 결정하였고, 정역학적 지지력공식과 Meyerhof 경험식을 이용하여 설계 극한지지력을 산정하였다. 정확하고 효율적인 신뢰성평가를 위해 일차신뢰도법 및 몬테카를로 시뮬레이션 기반의 컴퓨터 프로그램을 개발하였다. 저항편향계수의 통계치를 이용하여 명시적 형태의 간편법인 평균일계이차모멘트법(MVFOSM)과 개선된 방법인 일차신뢰도법 및 몬테카를로 시뮬레이션에 의한 신뢰성해석을 수행하여 그 결과를 비교하였다. 또한 신뢰성 분석에 대한 주요 확률변수의 영향정도와 민감도를 파악하기 위하여 매개변수연구를 수행하였다.

Keywords

References

  1. 곽기석,박재현,최용규,허정원 (2006),'LRFD 설계를 위한 항타 강관말뚝의 저항편향계수 산정' 대한토목학회 논문집 제26권,제5C호,pp.343-350
  2. 건설교통부 (2003), 구조물기초설계기준, (사)한국지반공학회
  3. 한국건설기술연구원 (2007), LRFD 기초구조물 설계를 위한 저항 계수 결정 연구,건설교통부 건설교통 R&D 정책.인프라사업 2차년도 중간보고서,건설교통부
  4. 허정원 (2003),'실제 구조물의 유한요소 신뢰성해석을 위한 복합 알고리즘',대한토목학회 논문집,제23권 6A호,pp.1321-1329
  5. American Society of Civil Engineers (1997), Standard Guidelines for the Design and Installation of Pile Foundations, ASCE 20-96, ASCE, Reston, Virginia, U.S.A
  6. American Association of State Highway and Transportation Official (AASHTO) (2004), AASHTO LRFD Bridge Design Specifications Fourth Ed., AASHTO, Washington, D.C
  7. American Association of State Highway and Transportation Official (AASHTO) (2004), AASHTO LRFD Bridge Design Specifications Fourth Ed., AASHTO, Washington, D.C
  8. Barker, R.M. Duncan, lM. Rojiani, K.S. Ooi, P.S.K., Tan, C.K. and Kim, S.C. (1991), Manual for the Design of Bridge Foundations, NCHRP Report 343, Transportation Research Board, Washington, D.C
  9. Ellingwood, B.R., Galambos, T.V., MacGregor, J.G. and Cornell, C.A. (1980), 'Development of Probability-Based Load Criterion for American National Standard A58', Special Publication 577, National Bureau of Standards, Washington, D.C
  10. Eurocode 7 (1994), Geotechnical Design, General Rules, European Committee for Standardization, Prestandard, Danish Geotechnical Institute, Copenhagen
  11. Goble, G. (1999), Geotechnical Related Development and Implementation of Load and Resistance Factor Design (LRFD) Methods, NCHRP Synthesis of Highway Practice 276, Transportation Research Board, Washington, D.C
  12. Haldar, A. and Mahadevan, S. (2000), Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, New York, N.Y
  13. Hansell, W.C. and Viest, I.M. (1971), 'Load Design for Steel Highway Bridges, American Institute of Steel Construction', Engineering Journal, Vol.8, No.4, pp.113-123
  14. Hasofer, A.M. and Lind, N.C. (1974), 'Exact and Invariant Second-Moment Code Format', Journal of Engineering Mechanics, ASCE, Vol.100, No.1, pp.111-121
  15. Maurice, B., Frischknecht, R., Coelho, V., Hungerbhler (2000), 'Uncertainty Analysis in Life Cycle Inventory. Application to the Production of Electricity with French Coal Power Plants', Journal of Cleaner Production, Vol. 8, No.2, pp.95-108 https://doi.org/10.1016/S0959-6526(99)00324-8
  16. Nowak, A. (1999), Calibration of LRFD Bridge Design Code, NCHRP Report 368, Transportation Research Board, Washington, D.C
  17. Paikowsky, S.G. (2004), Load and Resistance Factor Design for Deep Foundations, NCHRP Report 507, Transportation Research Board, Washington, D.C
  18. Rackwitz, R. and Fiessler, B. (1978), 'Structural Reliability under Combined Random Load Sequences', Computers & Structures, Vol.9, pp.484-494
  19. Thoft-Christensen, P. and Baker, M. (1982), Structural Reliability Theory and Its Application, Springer-Verlag, New York