Abstract
Among various statistics, the spatial correlation function, that is "correlogram", is frequently used to evaluate or design the rain gauge network and to model the rainfall field. The spatial correlation structure of rainfall has the significant variation due to many factors. Thus, the variation of spatial correlation structure of rainfall causes serious problems when deciding the spatial correlation function of rainfall within the basin. In this study, the spatial rainfall structure was modeled using bivariate mixed distributions to derive monthly spatial correlograms, based on Gaussian and lognormal distributions. This study derived the correlograms using hourly data of 28 rain gauge stations in the Keum river basin. From the results, we concluded as following; (1) Among three cases (Case A, Case B, Case C) considered, the Case A(+,+) seems to be the most relevant as it is not distorted much by zero measurements. (2) The spatial correlograms based on the lognormal distribution, which is theoretically as well as practically adequate, is better than that based on the Gaussian distribution. (3) The spatial correlation in July exponentially decrease more obviously than those in other months. (4) The spatial correlograms should be derived considering the temporal resolution(hourly, daily, etc) of interest.
강우장의 특성을 정량화하는 여러 통계적 특성치 중에 자주 사용되는 공간상관함수(또는 공간상관도)는 강우의 평가나 설계 그리고 강우장을 모형화하는데 중요하게 사용된다. 그러나 강우의 공간상관 구조는 여러 요인에 의해 많은 변동성을 가지고 있다. 이와 같은 강우의 공간상관구조에 대한 변동특성은 유역을 대표하는 공간상관구조를 결정하는데 문제점으로 작용한다. 따라서 본 연구에서는 이변량 혼합분포를 이용하여 강우를 모형화한 후 정규분포와 대수정규분포를 고려하여 월별, 자료의 시간간격별로 공간상관도를 유도하고 그 변동특성을 파악하였다. 대상유역인 금강유역의 28개 강우관측소의 자료를 이용한 결과 다음과 같은 결론을 얻을 수 있었다. (1) 무강우자료에 대한 영향을 고려한 결과, 세 가지의 경우(Case A, B, C) 중에서 Case A(+,+)의 경우가 #0#에 대한 공간상관함수의 왜곡이 최소가 되기 때문에 가장 적절한 경우이다. (2) 일반적으로 사용되는 정규분포보다는 이론적 그리고 실증적으로 더 적절한 대수정규분포를 사용해야 함이 바람직하다. (3) 월별 공간상관함수 중 지수함수적인 감소경향이 가장 뚜렷한 7월의 경우가 유역을 대표하는 공간상관함수로 적절하다. (4) 자료의 시간해상도별 공간상관도는 다르게 유도되기 때문에 각각에 대한 경우를 고려해야 한다.