DOI QR코드

DOI QR Code

Investigation of NH4OH on Zircaloy-4 Surfaces Using Electron Emission Spectroscopy

  • Published : 2007.10.20

Abstract

The interaction of ammonium hydroxide (NH4OH) with zircaloy-4 (Zry-4) was investigated using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) methods. In order to study the surface chemistry of NH4OH/Zry-4 system, the binding energies of N1s, O1s and Zr3d electrons were monitored. The N1s peak intensity was remarkably increased by following cycles of Ar+ sputtering of NH4OH dosed Zry-4 surface at room temperature. Because the nitrogen stayed under the subsurface region was diffused out onto the Zry-4 surface after oxygen concentration was decreased. These could be occurred after the surface oxygen was diffused into the bulk or desorbed out from the surface until Ar+ fluence was 6.0 × 1016 Ar+/cm2 then the surface was relatively atomic deficient state. The O1s peak intensity was decreased by stepwise Ar+ sputtering. After many cycles of Ar+ sputtering, the peak intensities of Zr3d peaks did not change much but the shape of the peak clearly did change. This implies that the oxidation state of zirconium was changed during stepwise Ar+ sputtering of NH4OH/Zry-4. The Zr3d peak intensity of zirconium nitride (ZrNx) increased as the intensity of N1s (from zirconium nitride) increased but the Zr3d peak intensity of zirconium oxide (ZrOx) decreased due to the depopulation of the oxygen species on the surface region. We also observed that the peak intensity of Zr4+ was nearly same after Ar+ sputtering processes but the peak intensity of metallic zirconium increased compared to that of before the sputtering process was performed.

Keywords

References

  1. Ahmad, M.; Akhter, J. I.; Ali, G.; Akhtar, M.; Choudhry, M. A. J. Alloy Compd. 2006, 426, 176 https://doi.org/10.1016/j.jallcom.2006.02.022
  2. Meyer, G.; Kobrinsky, M.; Abriata, J. P.; Bolcich, J. C. J. Nucl. Mater. 1996, 229, 48 https://doi.org/10.1016/0022-3115(95)00228-6
  3. Hsu, H.-H. J. Alloy Compd. 2006, 426, 256 https://doi.org/10.1016/j.jallcom.2005.12.113
  4. Lim, B. H.; Hong, H. S.; Lee, K. S. J. Alloy Compd. 2003, 312, 134
  5. Wiame, H.; Centeno, M.-A.; Picard, S.; Bastians, P.; Grange, P. J. Eur. Ceram. Soc. 1998, 18, 1293
  6. Peng, D. Q.; Bai, X. D.; Pan, F.; Sun, H.; Chen, B. S. Appl. Surf. Sci. 2005, 252, 1793 https://doi.org/10.1016/j.apsusc.2005.03.131
  7. Inoue, M.; Yamashita, M.; Suganuma, K.; Nunogaki, M. J. Nucl. Sci. Technol. 2001, 38, 980 https://doi.org/10.3327/jnst.38.980
  8. Chemelle, P.; Knorr, D. B.; Van Der Sande, J. B.; Pelloux, R. M. J. Nucl. Mater. 1983, 113, 58 https://doi.org/10.1016/0022-3115(83)90166-6
  9. Fromm, E.; Jehn, H. Bull. Alloy Phase Diagrams. 1984, 5(3), 323
  10. Konev, V. N.; Nadolskii, A. L.; Minyacheva, L. A. Oxidation Metals 1997, 47(3/4), 237 https://doi.org/10.1007/BF01668512
  11. Yamanaka, S.; Miyake, M.; Katsura, M. J. Nucl. Mater. 1997, 247, 315 https://doi.org/10.1016/S0022-3115(97)00101-3
  12. Galan, P. P.; Sanz, L.; Rueda, J. M. Surf. Interface. Anal. 1990, 16(1-12), 535
  13. Choo, K. N.; Kim, Y. S. J. Nucl. Mater. 2001, 297, 52 https://doi.org/10.1016/S0022-3115(01)00582-7
  14. Zhang, C.-S.; Norton, P. R. J. Nucl. Mater. 2002, 300, 7
  15. Roustila, A.; Chene, J.; Severac, C. J. Alloy Compd. 2003, 356, 330 https://doi.org/10.1016/S0925-8388(03)00356-6
  16. Cox, B. J. Alloy Compd. 1997, 256, 244 https://doi.org/10.1016/S0925-8388(96)02852-6
  17. Khatamian, D. J. Alloy Compd. 1997, 253, 471 https://doi.org/10.1016/S0925-8388(96)03068-X
  18. Bellanger, G.; Rameau, J. J. J. Mater. Sci. 2000, 35, 1759 https://doi.org/10.1023/A:1004732703500
  19. Yau, T. L.; Paul, B. O.; Henson, R. H. Chem. Process 1999, 62, 70
  20. Kang, Y. C.; Ramsier, R. D. Vacuum 2002, 64, 113 https://doi.org/10.1016/S0042-207X(01)00382-7
  21. Kwon, J. H.; Youn, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2006, 27, 11
  22. Oh, K. S.; Kang, Y. C. Bull. Korean Chem. Soc. 2007, 28, 1341 https://doi.org/10.5012/bkcs.2007.28.8.1341
  23. Stojilovic, N.; Kang, Y. C.; Ramsier, R. D. Surf. Interface Anal. 2002, 33, 945 https://doi.org/10.1002/sia.1475
  24. Hong, H. S.; Kim, S. J.; Lee, K. S. J. Nucl. Mater. 1999, 273, 177 https://doi.org/10.1016/S0022-3115(99)00030-6
  25. Stojilovic, N.; Ramsier, R. D. Appl. Surf. Sci. 2006, 252, 5839 https://doi.org/10.1016/j.apsusc.2005.08.006
  26. Stojilovic, N.; Bender, E. T.; Ramsier, R. D. J. Nucl. Mater. 2006, 348, 79 https://doi.org/10.1016/j.jnucmat.2005.08.022
  27. Cohen, P. Water Coolant Technology of Power Reactors; American Nuclear Society: USA, 1980
  28. Kang, Y. C.; Ramsier, R. D. J. Nucl. Mater. 2002, 125, 303
  29. Rizzo, A.; Signore, M. A.; Mirenghi, L.; Serra, E. Thin Solid Films 2006, 515, 1307 https://doi.org/10.1016/j.tsf.2006.03.020
  30. Rizzo, A.; Signore, M. A.; Mirenghi, L.; Dimaio, D. Thin Solid Films 2006, 515, 1486 https://doi.org/10.1016/j.tsf.2006.04.012
  31. Gu, Y.; Guo, F.; Qian, Y.; Zheng, H.; Yang, Z. Mater. Lett. 2003, 57, 1679 https://doi.org/10.1016/S0167-577X(02)01051-0
  32. Zhu, X. L.; Liu, S. B.; Man, B. Y.; Xie, C. Q.; Chen, D. P.; Wang, D. Q.; Ye, T. C.; Liu, M. Appl. Surf. Sci. 2007, 253, 3122 https://doi.org/10.1016/j.apsusc.2006.07.002
  33. Yamamoto, M.; Kurahashi, M.; Chan, C. T.; Ho, K. M.; Naito, S. Surf. Sci. 1997, 387, 300 https://doi.org/10.1016/S0039-6028(97)00365-8
  34. Benia, H. M.; Guemmaz, M.; Schmerber, G.; Mosser, A.; Parlebas, J. C. Appl. Surf. Sci. 2003, 211, 146 https://doi.org/10.1016/S0169-4332(03)00246-0
  35. Tanabe, T.; Tomita, M. Surf. Sci. 1989, 222, 84 https://doi.org/10.1016/0039-6028(89)90336-1

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. Surface Phenomena of Deuterized Ethanol Exposed Zircaloy-4 Surfaces vol.30, pp.6, 2007, https://doi.org/10.5012/bkcs.2009.30.6.1349
  3. Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100) vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2729
  4. Synchrotron-based high-resolution photoemission spectroscopy study of ZIRLO cladding with H 2 O adsorption: Coverage and temperature dependence vol.10, pp.None, 2007, https://doi.org/10.1038/s41598-020-63585-5