DOI QR코드

DOI QR Code

Electrochemical Immunosensing of GOx-labeled CRP Antigen on Capture Antibody Monolayer Immobilized on Calixcrown-5 SAMs

  • Published : 2007.10.20

Abstract

Insulating effects on Au electrode according to the thickness and density of coated materials are well-known. To do electrochemical immunoassay reproducibly the glod electrode would be coated with self-assembled monolayers and antobodies. To get reproducibility, the antobody monolayer should be packed at highest density so that the amount of immobilized antibody at defined area should be the same. The calix[4]crown-5 SAMs could provide the basis for the antibodies to be immobilized reproducibly and at highest density. But the insulating effect would be highest too. We proved that the compactly packed protein monolayers on SAMs inhibited the electron transfer by block the free shuttling of redox molecules. The inhibition was minimized by inserting redox molecules in between the proteins during immobilization process. In this paper, we demonstrated that the calix[4]crown-5 SAMs would provide the protein monolayers with highest density and new method to minimize the insulating effect by inserted redox molecules in between the compactly packed protein monolayers.

Keywords

References

  1. Shin, J. H.; Yoon, S. Y.; Yoon, I. J.; Choi, S. H.; Lee, S. D.; Nam, H.; Cha, G. S. Sensors and Actuators B 1998, 50, 19 https://doi.org/10.1016/S0925-4005(98)00151-8
  2. Cui, G.; Yoo, J. H.; Woo, B. W.; Kim, S. S.; Cha, G. S.; Nam, H. Talanta 2001, 54, 1105 https://doi.org/10.1016/S0039-9140(01)00377-0
  3. Riklin, A.; Willer, I. Anal. Chem. 1995, 67, 4118 https://doi.org/10.1021/ac00118a014
  4. Yoon, H. C.; Hong, M., Y.; Kim, H. S. Anal. Biochem. 2000, 282, 121 https://doi.org/10.1006/abio.2000.4608
  5. Darain, F.; Park, D. S.; Shim, Y. B. Biosens. Bioelectron. 2003, 18, 773 https://doi.org/10.1016/S0956-5663(03)00004-6
  6. Darain, F.; Park, D. S.; Park, J. S.; Chang, S. C.; Shim, Y. B. Biosens. Bioelectron. 2005, 20, 1780 https://doi.org/10.1016/j.bios.2004.07.006
  7. Ionescu, R. E.; Gondarn, C.; Consnier, S.; Gheber, L. A.; Marks, R. S. Talanta 2005, 66, 15 https://doi.org/10.1016/j.talanta.2004.06.048
  8. Zeravik, J.; Ruzgas, T.; Franek, M. Biosens. Bioelectron. 2003, 18, 1321 https://doi.org/10.1016/S0956-5663(03)00076-9
  9. Tiefenauer, L. X.; Kossek, S.; Padeste, C.; Thiebaud, P. Biosens. Bioelectron. 1997, 12(3), 213 https://doi.org/10.1016/S0956-5663(97)85339-0
  10. Wendzinski, F.; Grundig, B.; Rennerberg, R.; Spener, F. Biosens. Bioelectron. 1997, 12(1), 43 https://doi.org/10.1016/0956-5663(96)89088-9
  11. Ghindilis, A.; Krishana, R.; Atanasov, P.; Wilkins, E. Biosens. Bioelectron. 1997, 12(5), 415 https://doi.org/10.1016/S0956-5663(97)00016-X
  12. Yoshio, O.; Kenichi, N.; Yukio, S.; Mamoru, S.; Takashi, M. Biochem. 1998, 37, 5666 https://doi.org/10.1021/bi980037k
  13. Vender, A. V.; Evtushenko, O. A.; Baykov, A. A. Anal. Biochem. 1990, 191, 65 https://doi.org/10.1016/0003-2697(90)90388-P
  14. Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Nature 382, 522, 1996
  15. Lee, Y. S.; Lee, E. K.; Cho, Y. W.; Matsui, T.; Kang, I. C.; Kim, T. S.; Han, M. H. Proteomics 2003, 3, 2289 https://doi.org/10.1002/pmic.200300541
  16. Choi, S.; Choi, E. Y.; Kim, D. J.; Kim, J. H.; Kim, T. S.; Oh, S. W. Clinica Chimica Acta 2004, 339, 147 https://doi.org/10.1016/j.cccn.2003.10.002
  17. Oh, S. W.; Moon, J. D.; Lim, H. J.; Park, S. Y.; Kim, T. S.; Park, J. B.; Han, M. H.; Snyder, M.; Choi, E. Y. The FASEB Journal 2005, 19, 1335
  18. Kim, T. S. Proteogen, US Patent no. 6, 485, 984 B1, Nov 26, 2002
  19. Avrameas, S.; Ternynck, T.; Guesdon, J. L. Immunol. 1978, 8(Suppl. 7), 7
  20. Principles and Practice of Immunoassay; Price, C. P.; Newman, D. J., Eds.; Stockton Press: New York, 1991
  21. Crowther, J. R. ELISA Theory and Pratice; Humana Press Inc.: 1996
  22. Ryoo, H.; Kim, Y.; Lee, J.; Shin, W.; Myung, N.; Hong, H.-G. Bull. Korean Chem. Soc. 2006, 27, 672 https://doi.org/10.5012/bkcs.2006.27.5.672

Cited by

  1. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications vol.40, pp.5, 2011, https://doi.org/10.1039/c0cs00056f
  2. Characterization of the mixed self-assembled monolayer at the molecular scale vol.47, pp.40, 2011, https://doi.org/10.1039/c1cc14048e
  3. Biological applications of functionalized calixarenes vol.42, pp.1, 2013, https://doi.org/10.1039/C2CS35233H
  4. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster vol.179, pp.1, 2016, https://doi.org/10.1007/s12010-016-1986-y
  5. Synthesis, structural characterisation and metal ion-binding properties of a new p-tert-butyldihomooxacalix[4]crown-6 vol.21, pp.1, 2007, https://doi.org/10.1080/10610270802516609
  6. New water-soluble iminecalix[4]arene with a deep hydrophobic cavity vol.50, pp.52, 2007, https://doi.org/10.1016/j.tetlet.2009.10.058
  7. Thiacalix[4]monocrowns with terpyridine functional groups as new structural units for luminescent polynuclear lanthanide complexes vol.28, pp.5, 2016, https://doi.org/10.1080/10610278.2016.1150593