DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of Diphenyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile

  • Published : 2007.10.20

Abstract

The kinetics and mechanism of the nucleophilic substitution reactions of diphenyl phosphinic (1) and thiophosphinic (2) chlorides with substituted X-pyridines are investigated kinetically in acetonitrile at 35.0 and 55.0 oC, respectively. A concerted mechanism with backside nucleophilic attack is proposed for the pyridinolysis of 1, on the basis of the linear Bronsted plot with the βX value of 0.68. In the case of the pyridinolysis of 2, the Hammett and Bronsted plots are biphasic concave upwards with the break point at 3- phenyl pyridine. These results indicate a change in mechanism from a concerted SN2(P) process with direct backside nucleophilic attack for less basic nucleophiles (X = 3-CN-3-Ph) to a stepwise process with frontside attack for more basic nucleophiles (X = 4-MeO-3-Ph). Apparent secondary inverse kinetic isotope effects with deuterated pyridine (C5D5N), kH/kD < 1, are observed for the pyridinolysis of 1 and 2.

Keywords

References

  1. Hudson, R. F. Structure and Mechanism in Organophosphorus Chemistry; Academic Press: London, 1965; Chapter 3
  2. Hall, C. R.; Inch, T. D. Tetrahedron 1980, 36, 2059 https://doi.org/10.1016/0040-4020(80)80096-2
  3. Thatcher, G. R. J. Adv. Phys. Org. Chem. 1989, 25, 99 https://doi.org/10.1016/S0065-3160(08)60019-2
  4. Williams, A. Concerted Organic and Bio-organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 6
  5. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49 https://doi.org/10.1016/S0065-3160(05)40002-7
  6. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61 https://doi.org/10.2174/1385272053369349
  7. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12 https://doi.org/10.1021/jo990671j
  8. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215 https://doi.org/10.1021/jo0162742
  9. Adhikary, K. K.; Lee, H. W.; Lee. I. Bull. Korean Chem. Soc. 2003, 24, 1135 https://doi.org/10.5012/bkcs.2003.24.8.1135
  10. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
  11. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632 https://doi.org/10.1002/kin.10081
  12. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493 https://doi.org/10.1021/jo0700934
  13. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936 https://doi.org/10.5012/bkcs.2007.28.6.936
  14. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162 https://doi.org/10.1021/ja001814i
  15. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4
  16. Charton, M. Prog. Phys. Org. Chem. 1989, 16, 287
  17. Omakor, J. E.; Onyido, I.; vanloon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324
  18. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178 https://doi.org/10.1021/ja035167h
  19. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477 https://doi.org/10.1021/ja964217y
  20. Neimysheva, A. A.; Savchik, V.; Ermolaeva, M. V.; Knunyants, I. L. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1968, 2104
  21. Ketelaar, J. A. A.; Gresmann, H. R.; Koopmans, K. Recl. Trav. Chim. Pays-Bas. 1952, 71, 1253
  22. Chlebowski, J. F.; Coleman, J. E. J. Biol. Chem. 1974, 247, 7192
  23. Cook, R. D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. Can. J. Chem. 1986, 64, 1630 https://doi.org/10.1139/v86-269
  24. Bel'skii, V. E.; Bezzubova, N. N.; Akamsin, V. D.; Eliseenkov, V. N.; Rizpolozhenskii, N. I.; Puduvik, A. N. Dokl. Akad. Nauk. SSSR 1971, 197, 85; Eng Trans PP. 171
  25. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
  26. Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 515
  27. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823 https://doi.org/10.1021/jo070171n
  28. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213 https://doi.org/10.1139/v86-037
  29. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1990, 103, 7302 https://doi.org/10.1021/jp991115w
  30. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45 https://doi.org/10.1002/9780470171837.ch2
  31. Williams, A. Free Energy Relationships in Organic and Bioorganic Chemistry; RSC: Cambridge, UK, 2003; Chapter 7
  32. Ruff, A.; Csizmadia, I. G. Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier: Amsterdam, Netherlands, 1994; Chapter 7
  33. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  34. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8
  35. Fischer, A.; Galloway, J. A.; Vaughan, J. J. Chem. Soc. 1964, 3591 https://doi.org/10.1039/jr9640003591
  36. Lee, I.; Hong, S. W.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2001, 66, 8549 https://doi.org/10.1021/jo0108212
  37. Williams, A. J. Am. Chem. Soc. 1985, 107, 6335 https://doi.org/10.1021/ja00308a029
  38. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1983, 105, 3356 https://doi.org/10.1021/ja00348a077
  39. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591 https://doi.org/10.1021/ja00336a046
  40. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
  41. Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 7587 https://doi.org/10.1021/ja00201a048
  42. Khan, S. A.; Kirby, A. J. Chem. Soc. (B) 1970, 1172
  43. Kirby, A. J.; Varvoglis. A. G. J. Chem. Soc. (B) 1968, 135
  44. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890 https://doi.org/10.1021/ja00214a037
  45. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894 https://doi.org/10.1021/ja00409a046
  46. Perozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1975, 96, 6735 https://doi.org/10.1021/ja00828a032
  47. Ramirez, F. Acc. Chem. Res. 1968, 1, 168 https://doi.org/10.1021/ar50006a002
  48. McDowell, R. S.; Streitwieser, A. J. Am. Chem. Soc. 1985, 107, 5849 https://doi.org/10.1021/ja00307a003
  49. Lee, I.; Kim, C. K.; Lee, B. S.; Ha, T.-K. THEOCHEM 1993, 279, 191
  50. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 2 1976, 679
  51. Castro, E. A.; Gil, F. J. J. Am. Chem. Soc. 1977, 99, 7611 https://doi.org/10.1021/ja00465a032
  52. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018, 7031 https://doi.org/10.1021/ja00829a035
  53. Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953 https://doi.org/10.1021/jo982063u
  54. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431 https://doi.org/10.1021/j100175a004
  55. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008 https://doi.org/10.1021/ja038343v
  56. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641 https://doi.org/10.1021/ja0511927

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3505
  8. Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
  9. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  10. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  11. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  12. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  13. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  14. Electronic and solvent effects on kinetics of SNAr substitution reactions of substituted anilines with 2,6-bis(trifluoromethanesulfonyl)-4-nitroanisole in MeOH–Me2SO mixtures of varying composition: one reaction with two mechanistic pathways vol.144, pp.10, 2013, https://doi.org/10.1007/s00706-013-1030-7
  15. vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2251
  16. Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
  17. Kinetics and mechanism of the anilinolysis of dimethyl and diethyl chloro(thiono)phosphates vol.21, pp.7-8, 2008, https://doi.org/10.1002/poc.1314
  18. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  19. Kinetics and mechanism of the aminolysis of dimethyl and methyl phenyl phosphinic chlorides with anilines vol.22, pp.5, 2009, https://doi.org/10.1002/poc.1478
  20. Anilinolysis of Diphenyl Thiophosphinic Chloride and Theoretical Studies on Various R1R2P(O or S)Cl vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2003
  21. Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.117
  22. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1915
  23. Correlation of the Rates of Solvolysis of Diphenylthiophosphinyl Chloride Using an Extended form of the Grunwald-Winstein Equation vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1927
  24. Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2065
  25. A Mechanistic Study on Alkaline Hydrolysis of Y-Substituted Phenyl Benzenesulfonates vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2477
  26. Reaction Mechanism and Structure of Transition State Determined from Analysis of Bronsted βnuc for Aminolysis of 4-Nitrophenyl Diphenylphosphinate vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2509
  27. Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.585
  28. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  29. Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.851
  30. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1459
  31. Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1769
  32. The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2393
  33. Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2413
  34. Kinetic Studies of the Solvolyses of Phenyl 4-Methylphenoxy Thiophosphinyl Chloride vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2437
  35. A Kinetic Study on Solvolysis of Diphenyl Thiophosphorochloridate vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.383
  36. Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
  37. Correlation of the Rates of Solvolysis of Chlorodiphenylphosphine Using the Extended Grunwald-Winstein Equation vol.185, pp.4, 2007, https://doi.org/10.1080/10426500903012478
  38. Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2007, https://doi.org/10.5012/bkcs.2010.31.12.3856
  39. Kinetic Studies of the Solvolyses of 2,2,2-Trichloro-1,1-Dimethylethyl Chloroformate vol.31, pp.4, 2010, https://doi.org/10.5012/bkcs.2010.31.04.835
  40. Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2007, https://doi.org/10.5012/bkcs.2010.31.5.1403
  41. Kinetic Studies of the Solvolyses of Isopropenyl Chloroformate vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1793
  42. Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2007, https://doi.org/10.1002/poc.1709
  43. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  44. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2007, https://doi.org/10.5012/bkcs.2011.32.11.3947
  45. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  46. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4304
  47. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4387
  48. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4403
  49. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2007, https://doi.org/10.5012/bkcs.2011.32.2.709
  50. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2007, https://doi.org/10.5012/bkcs.2011.32.3.889
  51. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2007, https://doi.org/10.5012/bkcs.2011.32.6.1997
  52. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2007, https://doi.org/10.5012/bkcs.2011.32.4.1138
  53. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  54. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2007, https://doi.org/10.5012/bkcs.2011.32.7.2306
  55. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  56. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2007, https://doi.org/10.5012/bkcs.2011.32.8.2628
  57. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  58. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2007, https://doi.org/10.5012/bkcs.2011.32.9.3355
  59. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  60. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  61. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2007, https://doi.org/10.5012/bkcs.2012.33.3.1055
  62. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2007, https://doi.org/10.5012/bkcs.2014.35.3.753
  63. Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate vol.35, pp.8, 2007, https://doi.org/10.5012/bkcs.2014.35.8.2465
  64. Nucleofugality hierarchy, in the aminolysis reaction of 4-cyanophenyl 4-nitrophenyl carbonate and thionocarbonate. Experimental and theoretical study vol.45, pp.26, 2021, https://doi.org/10.1039/d0nj05837h