DOI QR코드

DOI QR Code

Hydrogenated In-doped ZnO Thin Films for the New Anode Material of Organic Light Emitting Devices: Synthesis and Application Test

  • Park, Young-Ran (Department of Physics, Institute of Basic Science and Center for Nanotubes and Nanocomposites, Sungkyunkwan University) ;
  • Nam, Eun-Kyoung (Department of Physics, Institute of Basic Science and Center for Nanotubes and Nanocomposites, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University) ;
  • Jung, Dong-Geun (Department of Physics, Institute of Basic Science and Center for Nanotubes and Nanocomposites, Sungkyunkwan University) ;
  • Suh, Su-Jeong (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kim, Young-Sung (Advanced Material Process of Information Technology, Sungkyunkwan University)
  • 발행 : 2007.12.20

초록

Transparent In-doped (1 at.%) zinc oxide (IZO) thin films are deposited by pulsed DC magnetron sputtering with H2 mixed Ar atmosphere on glass substrate without any heating process. Even at room temperature, highly c-axis oriented IZO thin films were grown in perpendicular to the substrate. The hydrogenated IZO (IZO:H) film isolated in H2 atmosphere for 30 min exhibited an average optical transmittance higher than 85% and low electrical resistivity of less than 2.7 × 10?3 Ω·cm. These values are comparable with those of commercially available ITO. Each of the IZO films was used as an anode contact to fabricate organic light-emitting diodes (OLEDs) and the device performances studied. At the current density of 1 × 103 A/m2, the OLEDs with IZO:H (H2) anode show excellent efficiency (11 V drive voltage) and a good brightness (8000 cd/m2) of the light emitted from the devices, which are as good as the control device built on a commercial ITO anode.

키워드

참고문헌

  1. Forrest, S. R.; Bradley, D. D. C.; Thompson, M. E. Adv. Mater. 2003, 15, 1043 https://doi.org/10.1002/adma.200302151
  2. Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J. Appl. Phys. Lett. 2006, 88, 073514 https://doi.org/10.1063/1.2177633
  3. Kim, H.; Horwitz, J. S.; Kim, W. H.; Makinen, A. J.; Kafafi, Z. H.; Chrisey, D. B. Thin Solid Films 2002, 420-421, 539
  4. Kim, H.; Gilmore, C. M.; Horwitz, J. S.; Pique, A.; Murata, H.; Kushto, G. P.; Schlaf, R.; Kafafi, Z. H.; Chrisey, D. B. Appl. Phys. Lett. 2000, 76, 259 https://doi.org/10.1063/1.125740
  5. Park, S.-M.; Ikegami, T.; Ebilhara, K. Jpn. J. Appl. Phys. 2005, 44, 8027 https://doi.org/10.1143/JJAP.44.8027
  6. Suzuki, S.; Miyata, T.; Ishii, M.; Minami, T. Thin Solid Films 2003, 434, 14 https://doi.org/10.1016/S0040-6090(03)00463-2
  7. Kang, S. J.; Shin, H. H.; Yoon, Y. S. J. Korean Phys. Soc. 2007, 51, 183 https://doi.org/10.3938/jkps.51.183
  8. Lin, Y. J.; Tsal, C. L.; Lu, Y. M.; Liu, C. J. J. Appl. Phys. 2006, 99, 093501 https://doi.org/10.1063/1.2193649
  9. Kishimoto, S.; Yamada, T.; Ikeda, K.; Makino, H.; Yamamoto, T. Surface and Coatings Technology 2006, 201, 4000 https://doi.org/10.1016/j.surfcoat.2006.08.009
  10. Park, Y. R.; Choi, S. L.; Lee, J. H.; Kim, K. J. J. Korean Phys. Soc. 2007, 50, 638 https://doi.org/10.3938/jkps.50.638
  11. Jeong, S. H.; Park, B. N.; Yoo, D. G.; Boo, J. H.; Jung, D. J. Korean Phys. Soc. 2007, 50, 622 https://doi.org/10.3938/jkps.50.622
  12. Jiang, X.; Wong, F. L.; Fung, M. K.; Lee, S. T. Appl. Phys. Lett. 2003, 83, 1875 https://doi.org/10.1063/1.1605805
  13. Shin, Y. J.; Kim, K. S.; Park, N. G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2005, 26, 1929 https://doi.org/10.5012/bkcs.2005.26.12.1929
  14. Kim, K. S.; Kang, Y. S.; Lee, J. H.; Shin, Y. J.; Park, N. G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 295 https://doi.org/10.5012/bkcs.2006.27.2.295
  15. Kim, K. J.; Park, Y. R. Appl. Phys. Lett. 2001, 78, 475 https://doi.org/10.1063/1.1342042
  16. Qadri, S. B.; Kim, H.; Horwitz, J. S.; Chrisey, D. B. J. Appl. Phys. 2005, 88, 6564 https://doi.org/10.1063/1.1320032
  17. Kim, J. H.; Ahn, B. D.; Lee, C. H.; Jeon, K. A.; Kang, H. S.; Lee, S. Y. J. Appl. Phys. 2005, 100, 113515 https://doi.org/10.1063/1.2369544
  18. Van de Walle, C. G. Phys. Rev. Lett. 2000, 85, 1012 https://doi.org/10.1103/PhysRevLett.85.1012
  19. Wardle, M. G.; Goss, J. P.; Briddon, P. R. Appl. Phys. Lett. 2006, 88, 261906 https://doi.org/10.1063/1.2218303
  20. Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Nature 2003, 423, 626 https://doi.org/10.1038/nature01665
  21. Hao, X. T.; Zhu, F. R.; Ong, K. S.; Tan, L. W. Semicond. Sci. Technol. 2006, 21, 48 https://doi.org/10.1088/0268-1242/21/1/009
  22. Ziegler, E.; Heinrich, A.; Oppermann, H.; Stover, G. Phys. Status Solidi (a) 1981, 66, 635 https://doi.org/10.1002/pssa.2210660228
  23. Burstein, E. Phys. Rev. 1954, 93, 632; Moss, T. S. Proc. Phys. Soc. London, Ser. B 1954, 67, 775 https://doi.org/10.1103/PhysRev.93.632
  24. Moss, T. S. Proc. Phys. Soc. London, Ser. B 1954, 67, 775

피인용 문헌

  1. The Low-Temperature Crystallization and Interface Characteristics of ZnInSnO/In Films Using a Bias-Crystallization Mechanism vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/272387
  2. Physical Properties of Sputtered Indium-doped ZnO Films Deposited on Flexible Transparent Substrates vol.21, pp.6, 2018, https://doi.org/10.1590/1980-5373-mr-2018-0224
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Preparation of c-Axis Oriented La2CuO4 Thin Films on the Si Substrate by Pulsed Laser Deposition vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.685
  5. Giant Conductivity Modulation of Aluminum Oxide Using Focused Ion Beam vol.1, pp.7, 2019, https://doi.org/10.1021/acsaelm.9b00185
  6. Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere vol.10, pp.5, 2020, https://doi.org/10.3390/coatings10050472
  7. Hypothesis on the Influence of the Magnetic Behaviour of Hydrogen Doped Zinc Oxide during Its Plasma Sputtering Process vol.11, pp.2, 2007, https://doi.org/10.3390/coatings11020222