DOI QR코드

DOI QR Code

Curcumin-Loaded PLGA Nanoparticles Coating onto Metal Stent by Electrophoretic Deposition Techniques

  • Nam, So-Hee (School of Chemistry and Molecular Engineering, Seoul National University,) ;
  • Nam, Hye-Yeong (School of Chemistry and Molecular Engineering, Seoul National University,) ;
  • Joo, Jae-Ryang (School of Chemistry and Molecular Engineering, Seoul National University,) ;
  • Baek, In-Su (School of Chemistry and Molecular Engineering, Seoul National University,) ;
  • Park, Jong-Sang (School of Chemistry and Molecular Engineering, Seoul National University,)
  • Published : 2007.03.20

Abstract

Restenosis after percutaneous coronary intervention (PCI) continues to be a serious problem in clinical cardiology. To solve this problem, drug eluting stents (DES) with antiproliferative agents have been developed. Variable local drug delivery systems in the context of stenting require the development of stent manufacture, drug pharmacology and coating technology. We have worked on a system that integrates electrophoretic deposition (EPD) technology with the polymeric nanoparticles in DES for local drug delivery and a controlled release system. The surface morphology and drug loading amount of DES by EPD have been investigated under different operational conditions, such as operation time, voltage and the composition of media. We prepared poly-D,L-lactide-co-glycolic acid (PLGA) nanoparticles embedded with curcumin, which was done by a modified spontaneous emulsification method and used polyacrylic acid (PAA) as a surfactant because its carboxylic group contribute negative charge to the surface of CPNPs (?53.5 ± 5.8 mV). In the process of ‘trial and error' endeavors, we found that it is easy to control the drug loading amount deposited onto the stent while keeping uniform surface morphology. Accordingly, stent coating by EPD has a wide application to the modification of DES using various kinds of nanoparticles and drugs.

Keywords

References

  1. Birkenhauer, P.; Yang, Z.; Gander, B. JPP. 2004, 56, 1339
  2. Farb, A.; Kolodgie, F. D.; Hwang, J. Y. Circulation 2004, 110, 940 https://doi.org/10.1161/01.CIR.0000139337.56084.30
  3. Moses, J. W.; Martin, B.; Popma, L. J. N. Engl. J. Med. 2003, 349, 1315 https://doi.org/10.1056/NEJMoa035071
  4. Aloke, V.; Finn, Herman K. Gold, Circulation 2004, 110, 318 https://doi.org/10.1161/01.CIR.0000142207.05425.76
  5. Kaya, C.; Kaya, F.; Su, B.; Thomas, B.; Boccaccini, A. R. Surface and Coating Technology 2005, 191, 303 https://doi.org/10.1016/j.surfcoat.2004.03.042
  6. Anne, G.; Vanmeensel, K.; Vleugels, J.; Van der Biest, O. Colloids Surfs. 2004, 245, 35 https://doi.org/10.1016/j.colsurfa.2004.07.001
  7. Kershner, R. J.; Bullard, J. W.; Cima, M. J. J. Colloid Interface Sci. 2004, 278, 146 https://doi.org/10.1016/j.jcis.2004.05.017
  8. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. J. Contr. Release 2001, 70, 1 https://doi.org/10.1016/S0168-3659(00)00339-4
  9. Langer, R. Acc. Chem. Res. 2000, 33, 94 https://doi.org/10.1021/ar9800993
  10. Astete, C. E.; Sabliov, C. M. J. Biomater. Sci. Polymer Edn. 2006, 17, 247 https://doi.org/10.1163/156856206775997322
  11. Babu, P. S.; Srinivasan, K. Mol. Cell Biochem. 1995, 152, 13
  12. Foryst-Ludwig, A.; Neumann, M.; Schneider-Brachert, W. Biochem Biophys Res Commun. 2004, 316, 1065 https://doi.org/10.1016/j.bbrc.2004.02.158
  13. Goel, A.; Boland, C. R.; Chauhan, D. P. Cancer Lett. 2001, 172, 111 https://doi.org/10.1016/S0304-3835(01)00655-3
  14. Onoda, M.; Inano, H. Nitric Oxide 2000, 4, 505 https://doi.org/10.1006/niox.2000.0305
  15. Soudamini, K. K.; Unnikrishnan, M. C.; Soni, K. B. Indian J. Physiol Pharmacol. 1992, 36, 239
  16. Reed, A. M.; Gilding, D. K. Polymer 1981, 22, 494 https://doi.org/10.1016/0032-3861(81)90168-3
  17. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakessheff, K. M. Chem. Rev. 1999, 99, 3181 https://doi.org/10.1021/cr940351u
  18. Panyama, J.;Labhasetwar, V. Adv. Drug Deliv. Rev. 2003, 55, 329 https://doi.org/10.1016/S0169-409X(02)00228-4
  19. Win, K. Y.; Feng, S. S. Biomaterials 2006, 7, 2285
  20. Labhasetwar, V.; Song, C.; Humphrey, W.; Shebuski, R.; Levy, J. J. Pharm. Sci. 1998, 87, 1229 https://doi.org/10.1021/js980021f
  21. Indolfi, C.; Mongiardo, A.; Curcio, A.; Torella, D. Trends Cardiovasc Med. 2003, 13, 142 https://doi.org/10.1016/S1050-1738(03)00038-0
  22. Castro, Y.; Ferrari, B.; Moreno, R.; Duran, A. Surface and Coatings Technology 2004, 182, 199 https://doi.org/10.1016/j.surfcoat.2003.07.001
  23. Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A. J. Phys. 1998, 31, 2338

Cited by

  1. Development and validation of a fluorimetric method to determine curcumin in lipid and polymeric nanocapsule suspensions vol.46, pp.2, 2010, https://doi.org/10.1590/S1984-82502010000200008
  2. Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol–gel thin films vol.21, pp.32, 2011, https://doi.org/10.1039/c1jm11262g
  3. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents vol.111, pp.2, 2012, https://doi.org/10.1007/s00436-012-2866-1
  4. Investigation of Different Drug Deposition Techniques on Drug Releasing Properties of Cardiovascular Drug Coated Balloons vol.51, pp.33, 2012, https://doi.org/10.1021/ie3006676
  5. Electrophoretic Deposition of Biological Macromolecules, Drugs, And Cells vol.14, pp.10, 2013, https://doi.org/10.1021/bm401021b
  6. Advanced stent coating for drug delivery and in vivo biocompatibility vol.15, pp.10, 2013, https://doi.org/10.1007/s11051-013-1962-1
  7. In Vitro Activity of Curcumin and Silver Nanoparticles Against Blastocystis hominis vol.23, pp.3, 2015, https://doi.org/10.1097/IPC.0000000000000242
  8. Nanomaterial coatings applied on stent surfaces vol.11, pp.10, 2016, https://doi.org/10.2217/nnm-2015-0007
  9. Nanoparticle coating on the silane-modified surface of magnesium for local drug delivery and controlled corrosion vol.30, pp.6, 2016, https://doi.org/10.1177/0885328215582110
  10. Augmentation of therapeutic potential of curcumin using nanotechnology: current perspectives pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1442345
  11. Recent alternative approaches of vascular drug-eluting stents vol.48, pp.2, 2018, https://doi.org/10.1007/s40005-017-0378-9
  12. Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: Inherent potential for biosynthetic versus live recombinant microbicides vol.5, pp.1, 2008, https://doi.org/10.1186/1742-4682-5-18
  13. Reduced Burst Release from ePTFE Grafts: A New Coating Method for Controlled Drug Release vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.422
  14. Polymeric Nano-half-shells Prepared by Simple Solvent Evaporation Method vol.30, pp.2, 2009, https://doi.org/10.5012/bkcs.2009.30.2.486
  15. A Novel Deposition Method of PLGA Nanoparticles on Coronary Stents vol.30, pp.5, 2007, https://doi.org/10.5012/bkcs.2009.30.5.1085
  16. Polymeric Nano-half-shells prepared by Simple Solvent Evaporation Method vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.001
  17. Thermal Process for Enhancing Mechanical Strength of PLGA Nanoparticle Layers on Coronary Stents vol.30, pp.9, 2007, https://doi.org/10.5012/bkcs.2009.30.9.1985
  18. Electrophoretic deposition of biomaterials vol.7, pp.suppl._5, 2007, https://doi.org/10.1098/rsif.2010.0156.focus
  19. Precise ultrasonic coating and controlled release of sirolimus with biodegradable polymers for drug-eluting stent vol.1, pp.1, 2007, https://doi.org/10.12989/bme.2014.1.1.013
  20. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation vol.12, pp.1, 2007, https://doi.org/10.4103/1735-3327.150342
  21. Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition vol.9, pp.9, 2007, https://doi.org/10.3390/coatings9090572