• Title/Summary/Keyword: Curcumin

Search Result 334, Processing Time 0.027 seconds

Estimation of curcumin intake in Korea based on the Korea National Health and Nutrition Examination Survey (2008-2012)

  • Kwon, Youngjoo
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.589-594
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Turmeric and its active component curcumin have received considerable attention due to their many recognized biological activities. Turmeric has been commonly used in food preparation and herbal remedies in South Asia, leading to a high consumption rate of curcumin in this region. However, the amount of curcumin in the Korean diet has not yet been estimated, where turmeric is not a common ingredient. SUBJECTS/METHODS: This study utilized the combined data sets obtained from the Korea National Health and Nutrition Examination Survey conducted from 2008 to 2012 in order to estimate the curcumin intake in the Korean diet. The mean intake of curcumin was estimated from the amount of curcumin-containing foods (curry powder and ready-made curry) consumed using reported curcumin content in commercial turmeric and curry powders. RESULTS: Only 0.06% of Koreans responded that they consumed foods containing curcumin in a given day, and 40% of them were younger than 20 years of age. Curcumin-containing foods were largely prepared at home (72.9%) and a significant proportion (20.4%, nearly twice that of all other foods) was consumed as school and workplace meals. The estimated mean turmeric intake was about 0.47 g/day corresponding to 2.7-14.8 mg curcumin, while the average curry powder consumption was about 16.4 g, which gave rise to curcumin intake in the range of 8.2-95.0 mg among individuals who consumed curcumin. The difference in estimated curcumin intake by using the curcumin content in curry powder and turmeric may reflect that curry powder manufactured in Korea might contain higher amounts of other ingredients such as flour, and an estimation based on the curcumin content in the turmeric might be more acceptable. CONCLUSIONS: Thus, the amount of curcumin that can be obtained from the Korean diet in a day is 2.7-14.8 mg, corresponding to nearly one fourth of the daily curcumin intake in South Asia, although curcumin is rarely consumed in Korea.

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

Liposomes for Solubilization and Delivery of Curcumin into Leukemia Cells

  • Jang, Rae-Sung;Kim, Eun-Joong;Suh, Min-Sung;Shim, Ga-Yong;Shim, Chang-Koo;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.293-297
    • /
    • 2006
  • Curcumin is a phytochemical compound with anticancer activity. Although curcumin has substantial pharmacological effect against various cancers, the low solubility of curcumin has hindered its development. For an organic solvent-free injectable formulation, we encapsulated curcumin in various liposomes. Due to its lipophilic property, curcumin was placed in the membrane region of liposomes. Curcumin was stably encapsulated in all formulations tested in this study. The cellular uptake of curcumin delivered in liposomal formulations or free form was measured in K562 human leukemia cell lines using a flow cytometry and MTT viability assay, respectively. Although all the liposomes could solubilize curcumin, the cellular levels and the anticancer effects of liposomal curcumin varied with the composition of liposomes. Moreover, liposomal curcumin down-regulated the expression of Notch-1, the molecule involved in the carcinogenesis, to the similar extent to free curcumin dissolved in dimethyl sulfoxide. These results warrant the development of liposomal curcumin as an injectable formulation for leukemia treatment.

Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells

  • Lee, Jong-Eun;Yoon, Sung Sik;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.484-491
    • /
    • 2019
  • Glioblastoma is the most aggressive common brain tumor in adults. Curcumin, from Curcuma longa, is an effective antitumor agent. Although the same proteins control both autophagy and cell death, the molecular connections between them are complicated and autophagy may promote or inhibit cell death. We investigated whether curcumin affects autophagy, which regulates curcumin-mediated tumor cell death in A172 human glioblastoma cells. When A172 cells were incubated with $10{\mu}M$ curcumin, autophagy increased in a time-dependent manner. Curcumin-induced cell death was reduced by co-incubation with the autophagy inhibitors 3-methyladenine (3-MA), hydroxychloroquine (HCQ), and LY294002. Curcumin-induced cell death was also inhibited by co-incubation with rapamycin, an autophagy inducer. When cells were incubated under serum-deprived medium, LC3-II amount was increased but the basal level of cell viability was reduced, leading to the inhibition of curcumin-induced cell death. Cell death was decreased by inhibiting curcumin-induced autophagy using small interference RNA (siRNA) of Atg5 or Beclin1. Therefore, curcumin-mediated tumor cell death is promoted by curcumin-induced autophagy, but not by an increase in the basal level of autophagy in rapamycin-treated or serum-deprived conditions. This suggests that the antitumor effects of curcumin are influenced differently by curcumin-induced autophagy and the prerequisite basal level of autophagy in cancer cells.

Development of Curcumin with Anti-Oxidation Effect of Water Dispersibility using Multi-Emulsification Technology (멀티 유화 기술 이용 수분산성의 항산화 효능을 함유한 커큐민의 개발)

  • Lee, Kyung-Haeng;Lee, Eun-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.6
    • /
    • pp.561-567
    • /
    • 2021
  • Curcumin is not soluble in water. Therefore, curcumin emulsion that can dissolve well in water were prepared using multi-emulsification technology, and the antioxidant activities and physical properties of emulsion were measured. Although curcumin was not dissolved in water, it was confirmed to be well dispersed in water when prepared in an aqueous dispersion curcumin emulsion. After dissolving curcumin using water and ethanol as solvents, respectively, the DPPH and ABTS radical scavenging abilities of the filtrate and the curcumin emulsion were measured. Because it was not dissolved in water, activities were not shown. However, when curcumin was dissolved in ethanol, the activities increased as the concentration of curcumin increased. On the other hand, when the curcumin emulsion was dissolved in water, it was found to have abilities. The curcumin emulsion was nano-homogenized and the size and distribution of the emulsified spheres were measured. It was confirmed to be nano-sized as it appeared as 9.083 nm/100%. In the results of the DPPH radical and ABTS radical scavenging abilities of curcumin nano-emulsion, it was confirmed that there was no change in the antioxidant abilities. In conclusion, water-dispersible curcumin prepared using multi-emulsification technology, and it was confirmed to exhibit antioxidant activity and emulsion stability.

Anticoagulant activities of curcumin and its derivative

  • Kim, Dong-Chan;Ku, Sae-Kwang;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.221-226
    • /
    • 2012
  • Curcumin, a polyphenol responsible for the yellow color of the curry spice turmeric, possesses antiinflammatory, antiproliferative and antiangiogenic activities. However, anticoagulant activities of curcumin have not been studied. Here, the anticoagulant properties of curcumin and its derivative (bisdemethoxycurcumin, BDMC) were determined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT) as well as cell-based thrombin and activated factor X (FXa) generation activities. Data showed that curcumin and BDMC prolonged aPTT and PT significantly and inhibited thrombin and FXa activities. They inhibited the generation of thrombin or FXa. In accordance with these anticoagulant activities, curcumin and BDMC showed anticoagulant effect in vivo. Surprisingly, these anticoagulant effects of curcumin were better than those of BDMC indicating that methoxy group in curcumin positively regulated anticoagulant function of curcumin. Therefore, these results suggest that curcumin and BDMC possess antithrombotic activities and daily consumption of the curry spice turmeric might help maintain anticoagulant status.

Inhibition of Invasion and Induction of Apoptosis by Curcumin in H-ras-Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Kang, Hye-Jung;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2001
  • Curcumin, a dietary pigment in turmeric, posseses anti-carcinogenic and anti-metastatic properties. The present study was conducted to study in vitro chemopreventive effects of curcumin in transformed breast cells. Here, we show that curcumin inhibits H-ras-induced invasive phenotype in MCF10A human breast epithelial cells (H-ras MCF10A) and downregulates matrix metalloproteinase (MMP)-2 dose-dependently. Curcumin exerted cytotoxic effect on H-ras MCF10A cells in a concentration-dependent manner. Curcumin-induced cell death was mainly due to apoptosis in which a prominent downregulation of Bcl-2 and upregulation of Bax were involved. We also suggest a possible involvement of caspase-3 in curcumin-induced apoptosis. Curcumin treatment resulted in the production of reactive oxygen species (ROS) in H-ras MCF10A cells. Apoptotic event by curcumin was significantly inhibited by pretreatment of an antioxidant N-acetyl-$_L$-cysteine (NAC), suggesting redox signaling as a mechanism responsible for curcumin-induced apoptosis in H-ras MCF10A cells. Taken together, our results demonstrate that curcumin inhibits invasion and induces apoptosis, proving the chemopreventive potential of curcumin .

  • PDF

Curcumin supplementation and delayed onset muscle soreness (DOMS): effects, mechanisms, and practical considerations

  • Yoon, Wan-Young;Lee, Kihyuk;Kim, Jooyoung
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.39-43
    • /
    • 2020
  • [Purpose] In this literature review we aimed to investigate the effects of curcumin supplementation on delayed onset muscle soreness (DOMS), which occurs after exercise, and evaluate related parameters to propose practical recommendations for the field of exercise physiology. [Methods] Experimental studies conducted on curcumin supplementation and DOMS were systematically reviewed to determine (1) the effect of curcumin supplementation on DOMS, (2) potential mechanisms by which curcumin supplementation may attenuate DOMS, and (3) practical considerations for curcumin supplementation. [Results] While several studies have reported that curcumin supplementation attenuates DOMS after exercise, others have reported that curcumin supplementation has no effect on DOMS. Several mechanisms have been proposed by which curcumin supplementation may attenuate DOMS; the most probable of which is a reduction in inflammatory response. Other potential mechanisms include modulation of transient receptor potential vanilloid 1 (TRPV1) or changes in post-exercise capillary lactate levels; these require further examination. The usual recommended dose of curcumin is 150-1500 mg daily (sometimes up to 5 g), divided into 2-3 portions and taken before and after exercise. It is not necessary to take curcumin together with piperine. [Conclusion] Although conflicting results regarding the effects of curcumin supplementation on DOMS exist in literature, it may be considered as a method of nutritional intervention for reducing post-exercise DOMS.

Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia (허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화)

  • Gim, Sang-Ah;Koh, Phil-Ok
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin plays a protective role in brain injury through its anti-oxidant and anti-inflammatory activities. Moreover, peroxiredoxin-5 exerts a protective effect against oxidative stress. The aim of this study was to investigate whether curcumin modulated the peroxiredoxin-5 expression in focal cerebral ischemic animal model. Middle cerebral artery occlusion(MCAO) was performed to induce cerebral ischemic injury in rats. Adult male rats were injected intraperitoneally with vehicle or curcumin(50mg/kg B.W.) 1 h after MCAO and cerebral cortex tissues were collected 24 h after MCAO. Photographs of hematoxylin and eosin staining showed that MCAO induced necrotic changes with scalloped shrunken form and apoptotic changes with nuclear chromatin condensations. However, curcumin treatment attenuated MCAO-induced histopathological changes. Moreover, this study clearly showed that peroxiredoxin-5 expression was decreased in MCAO operated animal with vehicle using a proteomics approach. However, this decrease in peroxiredoxin-5 expression was attenuated by curcumin treatment. Reverse-transcription PCR and Western blot analyses confirmed that curcumin treatment alleviated the MCAO injury-induced decrease in peroxiredoxin-5 expression(p<0.05). These results demonstrated that curcumin regulates peroxiredoxin-5 expression in MCAO animal model. In conclusion, our findings suggest that curcumin exerts a neuroprotective effect in cerebral ischemia by attenuating the MCAO-induced decrease in peroxiredoxin-5 expression.

Antioxidant and cytotoxic activities of curcumin and its analogs: An exploration of structure-activity relationships (Curcumin과 관련 성분들의 산화방지활성과 세포독성 분석 및 구조와 활성 연관성 조사)

  • Lee, Bo-Hyun;Kim, Hee Jeong;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.463-469
    • /
    • 2021
  • Bioactivities of curcumin, a major pigment of Curcuma longa L., have been widely investigated. In this study, the antioxidant and cytotoxic properties of curcumin and its analogs including ferulic acid, dibenzoylmethane (DBM), and tetrahydrocurcumin (THC), and their structure-activity relationships were assessed. Ferulic acid, THC, and curcumin showed strong scavenging activities against several radicals and exhibited considerable lipid peroxidation inhibitory activity. Curcumin showed the strongest cytotoxic activities against HeLa, HCT-116, IEC-6 and INT 407 cells, whereas ferulic acid did not show any cytotoxic effect up to 100 µM against these cell lines. Cytotoxicity of curcumin and THC was significantly enhanced by superoxide dismutase and diminished by N-acetylcysteine. The combination treatment of curcumin and ferulic acid enhanced the cytotoxicity, whereas the combination of curcumin and DBM offset their toxicity. These results suggest that methoxy phenolic and β-diketon moieties are crucial for the antioxidant- and cytototoxic activities of curcumin, respectively.