References
- Birkenhauer, P.; Yang, Z.; Gander, B. JPP. 2004, 56, 1339
- Farb, A.; Kolodgie, F. D.; Hwang, J. Y. Circulation 2004, 110, 940 https://doi.org/10.1161/01.CIR.0000139337.56084.30
- Moses, J. W.; Martin, B.; Popma, L. J. N. Engl. J. Med. 2003, 349, 1315 https://doi.org/10.1056/NEJMoa035071
- Aloke, V.; Finn, Herman K. Gold, Circulation 2004, 110, 318 https://doi.org/10.1161/01.CIR.0000142207.05425.76
- Kaya, C.; Kaya, F.; Su, B.; Thomas, B.; Boccaccini, A. R. Surface and Coating Technology 2005, 191, 303 https://doi.org/10.1016/j.surfcoat.2004.03.042
- Anne, G.; Vanmeensel, K.; Vleugels, J.; Van der Biest, O. Colloids Surfs. 2004, 245, 35 https://doi.org/10.1016/j.colsurfa.2004.07.001
- Kershner, R. J.; Bullard, J. W.; Cima, M. J. J. Colloid Interface Sci. 2004, 278, 146 https://doi.org/10.1016/j.jcis.2004.05.017
- Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. J. Contr. Release 2001, 70, 1 https://doi.org/10.1016/S0168-3659(00)00339-4
- Langer, R. Acc. Chem. Res. 2000, 33, 94 https://doi.org/10.1021/ar9800993
- Astete, C. E.; Sabliov, C. M. J. Biomater. Sci. Polymer Edn. 2006, 17, 247 https://doi.org/10.1163/156856206775997322
- Babu, P. S.; Srinivasan, K. Mol. Cell Biochem. 1995, 152, 13
- Foryst-Ludwig, A.; Neumann, M.; Schneider-Brachert, W. Biochem Biophys Res Commun. 2004, 316, 1065 https://doi.org/10.1016/j.bbrc.2004.02.158
- Goel, A.; Boland, C. R.; Chauhan, D. P. Cancer Lett. 2001, 172, 111 https://doi.org/10.1016/S0304-3835(01)00655-3
- Onoda, M.; Inano, H. Nitric Oxide 2000, 4, 505 https://doi.org/10.1006/niox.2000.0305
- Soudamini, K. K.; Unnikrishnan, M. C.; Soni, K. B. Indian J. Physiol Pharmacol. 1992, 36, 239
- Reed, A. M.; Gilding, D. K. Polymer 1981, 22, 494 https://doi.org/10.1016/0032-3861(81)90168-3
- Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakessheff, K. M. Chem. Rev. 1999, 99, 3181 https://doi.org/10.1021/cr940351u
- Panyama, J.;Labhasetwar, V. Adv. Drug Deliv. Rev. 2003, 55, 329 https://doi.org/10.1016/S0169-409X(02)00228-4
- Win, K. Y.; Feng, S. S. Biomaterials 2006, 7, 2285
- Labhasetwar, V.; Song, C.; Humphrey, W.; Shebuski, R.; Levy, J. J. Pharm. Sci. 1998, 87, 1229 https://doi.org/10.1021/js980021f
- Indolfi, C.; Mongiardo, A.; Curcio, A.; Torella, D. Trends Cardiovasc Med. 2003, 13, 142 https://doi.org/10.1016/S1050-1738(03)00038-0
- Castro, Y.; Ferrari, B.; Moreno, R.; Duran, A. Surface and Coatings Technology 2004, 182, 199 https://doi.org/10.1016/j.surfcoat.2003.07.001
- Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A. J. Phys. 1998, 31, 2338
Cited by
- Development and validation of a fluorimetric method to determine curcumin in lipid and polymeric nanocapsule suspensions vol.46, pp.2, 2010, https://doi.org/10.1590/S1984-82502010000200008
- Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol–gel thin films vol.21, pp.32, 2011, https://doi.org/10.1039/c1jm11262g
- Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents vol.111, pp.2, 2012, https://doi.org/10.1007/s00436-012-2866-1
- Investigation of Different Drug Deposition Techniques on Drug Releasing Properties of Cardiovascular Drug Coated Balloons vol.51, pp.33, 2012, https://doi.org/10.1021/ie3006676
- Electrophoretic Deposition of Biological Macromolecules, Drugs, And Cells vol.14, pp.10, 2013, https://doi.org/10.1021/bm401021b
- Advanced stent coating for drug delivery and in vivo biocompatibility vol.15, pp.10, 2013, https://doi.org/10.1007/s11051-013-1962-1
- In Vitro Activity of Curcumin and Silver Nanoparticles Against Blastocystis hominis vol.23, pp.3, 2015, https://doi.org/10.1097/IPC.0000000000000242
- Nanomaterial coatings applied on stent surfaces vol.11, pp.10, 2016, https://doi.org/10.2217/nnm-2015-0007
- Nanoparticle coating on the silane-modified surface of magnesium for local drug delivery and controlled corrosion vol.30, pp.6, 2016, https://doi.org/10.1177/0885328215582110
- Augmentation of therapeutic potential of curcumin using nanotechnology: current perspectives pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1442345
- Recent alternative approaches of vascular drug-eluting stents vol.48, pp.2, 2018, https://doi.org/10.1007/s40005-017-0378-9
- Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: Inherent potential for biosynthetic versus live recombinant microbicides vol.5, pp.1, 2008, https://doi.org/10.1186/1742-4682-5-18
- Reduced Burst Release from ePTFE Grafts: A New Coating Method for Controlled Drug Release vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.422
- Polymeric Nano-half-shells Prepared by Simple Solvent Evaporation Method vol.30, pp.2, 2009, https://doi.org/10.5012/bkcs.2009.30.2.486
- A Novel Deposition Method of PLGA Nanoparticles on Coronary Stents vol.30, pp.5, 2007, https://doi.org/10.5012/bkcs.2009.30.5.1085
- Polymeric Nano-half-shells prepared by Simple Solvent Evaporation Method vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.001
- Thermal Process for Enhancing Mechanical Strength of PLGA Nanoparticle Layers on Coronary Stents vol.30, pp.9, 2007, https://doi.org/10.5012/bkcs.2009.30.9.1985
- Electrophoretic deposition of biomaterials vol.7, pp.suppl._5, 2007, https://doi.org/10.1098/rsif.2010.0156.focus
- Precise ultrasonic coating and controlled release of sirolimus with biodegradable polymers for drug-eluting stent vol.1, pp.1, 2007, https://doi.org/10.12989/bme.2014.1.1.013
- Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation vol.12, pp.1, 2007, https://doi.org/10.4103/1735-3327.150342
- Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition vol.9, pp.9, 2007, https://doi.org/10.3390/coatings9090572