DOI QR코드

DOI QR Code

Transport Properties of Ar-Kr Mixtures: A Molecular Dynamics Simulation Study

  • Min, Sun-Hong (Department of Chemistry, Kyungsung University) ;
  • Son, Chang-Mo (Department of Chemistry, Kyungsung University) ;
  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2007.10.20

Abstract

Equilibrium molecular dynamics (EMD) simulations are used to evaluate the transport coefficients of argonkrypton mixtures at two liquid states (state A: 94.4 K and 1 atm; state B: 135 K and 39.5 atm) via modified Green-Kubo formulas. The composition dependency of the volume at state A obeys close to the linear model for ideal liquid mixture, while that at state B differs from the linear model probably due to the high pressure. The radial distribution functions for the Ar-Kr mixture (x = 2/3) show a mixing effect: the first peak of g11 is higher than that of g(r) for pure Ar and the first peak of g22 is lower than that of g(r) for pure Kr. An exponential model of engineering correlation for diffusion coefficient (D) and shear viscosity (η) is superior to the simple linear model for ideal liquid mixtures. All three components of thermal conductivity (λpm, λtm, and λti) at state A and hence the total thermal conductivity decrease with the increase of x. At state B, the change in λtm is dominant over those in λpm and λti, and hence the total thermal conductivity decrease with the increase of x.

Keywords

References

  1. Rotenberg, A. J. Chem. Phys. 1965, 43, 4377 https://doi.org/10.1063/1.1696700
  2. Singer, J. V. L.; Singer, K. Molec. Phys. 1972, 24, 357 https://doi.org/10.1080/00268977200101511
  3. McDonald, I. R. Molec. Phys. 1972, 23, 41 https://doi.org/10.1080/00268977200100031
  4. Gardner, P. J.; Heyes, D. M.; Preston, S. R. Molec. Phys. 1991, 73, 141 https://doi.org/10.1080/00268979100101121
  5. Vogelsang, R.; Hoheisel, C.; Paolini, G. V.; Cicotti, G. Phys. Rev. A 1987, 36, 3964 https://doi.org/10.1103/PhysRevA.36.3964
  6. Hafskjol, B.; Ikeshoji, T.; Ratkje, S. K. Molec. Phys. 1993, 80, 1389 https://doi.org/10.1080/00268979300103101
  7. Ryckaert, J.-P.; Bellemans, A.; Cicotti, G.; Paolini, G. V. Phys. Rev. A 1989, 39, 259
  8. Heyes, D. M. Phys. Rev. B 1988, 37, 5677 https://doi.org/10.1103/PhysRevB.37.5677
  9. Borgelt, P.; Hoheisel, C.; Stell, G. Phys. Rev. A 1990, 42, 789 https://doi.org/10.1103/PhysRevA.42.789
  10. Evans, D. J. Phys. Rev. A 1981, 23, 1988 https://doi.org/10.1103/PhysRevA.23.1988
  11. Evans, D. J. Phys. Rev. A 1986, 34, 1449 https://doi.org/10.1103/PhysRevA.34.1449
  12. Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391 https://doi.org/10.1063/1.455407
  13. MacGowan, D.; Evans, D. J. Phys. Rev. A 1986, 34, 2133 https://doi.org/10.1103/PhysRevA.34.2133
  14. Evans, D. J.; MacGowan, D. Phys. Rev. A 1987, 36, 948 https://doi.org/10.1103/PhysRevA.36.948
  15. Paolini, G. V.; Ciccotti, G. Phys. Rev. A 1987, 35, 5156 https://doi.org/10.1103/PhysRevA.35.5156
  16. MacGowan, D. Phys. Rev. A 1987, 36, 1367 https://doi.org/10.1103/PhysRevA.36.1367
  17. Nakanishi, K.; Narusawa, H.; Toukubo, K. J. Chem. Phys. 1980, 72, 3089 https://doi.org/10.1063/1.439513
  18. Hoheisel, C.; Vogelsang, R. Comput. Phys. Rep. 1988, 8, 1 https://doi.org/10.1016/0167-7977(88)90007-X
  19. Vogelsang, R.; Hoheisel, C. J. Chem. Phys. 1988, 89, 1588 https://doi.org/10.1063/1.455155
  20. MacGowan, D. Molec. Phys. 1986, 59, 1017 https://doi.org/10.1080/00268978600102541
  21. Jolly, D. L.; Bearman, R. J. Molec. Phys. 1980, 41, 137 https://doi.org/10.1080/00268978000102631
  22. Toxvaerd, S. Molec. Phys. 1985, 56, 1017 https://doi.org/10.1080/00268978500102861
  23. Bearman, R. J.; Jolly, D. L. Molec. Phys. 1981, 44, 665 https://doi.org/10.1080/00268978100102711
  24. Bearman, R. J.; Jolly, D. L. Molec. Phys. 1984, 51, 447
  25. Evans, D. J.; Hanley, H. J. M. Phys. Rev. A 1979, 20, 1648 https://doi.org/10.1103/PhysRevA.20.1648
  26. Hanley, H. J. M.; Evans, D. J. Molec. Phys. 1980, 39, 1039 https://doi.org/10.1080/00268978000100881
  27. Murad, S.; Sethi, D. P. S.; Ravi, P. V. Fluid Phase Equilib. 1989, 53, 159 https://doi.org/10.1016/0378-3812(89)80083-4
  28. Murad, S. A.I.Ch.E. J. 1989, 35, 311 https://doi.org/10.1002/aic.690350216
  29. Street, W. B.; Staveley, L. A. K. J. Chem. Phys. 1967, 47, 2449 https://doi.org/10.1063/1.1703329
  30. Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232
  31. Hoover, W. G.; Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; Ashurst, W. T.; Moran, B. Phys. Rev. A 1980, 22, 1690 https://doi.org/10.1103/PhysRevA.22.1690
  32. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64
  33. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81
  34. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Englewood Cliffs: NJ, Prentice Hall, 1971
  35. Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1317 https://doi.org/10.5012/bkcs.2007.28.8.1317
  36. Naghizadeh, J.; Rice, S. A. J. Chem. Phys. 1962, 36, 2710 https://doi.org/10.1063/1.1732357
  37. Cook, G. A. Argon, Helium and the Rare Gases; Interscience: NY, 1961. Obtained from Lagrange interpolation of experimental results at 94.4 K
  38. Rabinovich, V. A.; Vasserman, A. A.; Nedostup, V. I.; Veksler, L. S. Thermodynamic Properties of Neon, Argon, Krypton and Xenon; Hemisphere: Washington D. C., 1988
  39. Lee, S. H.; Cummings, P. T. J. Chem. Phys. 1993, 99, 3919 https://doi.org/10.1063/1.466137

Cited by

  1. Study of structural and transport properties of argon, krypton, and their binary mixtures at different temperatures vol.23, pp.3, 2017, https://doi.org/10.1007/s00894-017-3261-8
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Transport Properties of Lennard-Jones Mixtures: A Molecular Dynamics Simulation Study vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.641
  4. Viscosity and Diffusion of Small Normal and Isomeric Alkanes: An Equilibrium Molecular Dynamics Simulation Study vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.1059
  5. Probe Molecule Diffusion in Small Normal and Isomeric Alkanes: An Equilibrium Molecular Dynamics Simulation Study vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1409