DOI QR코드

DOI QR Code

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Kang, Chan (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Published : 2007.10.20

Abstract

This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.

Keywords

References

  1. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27 https://doi.org/10.1021/ar9602664
  2. El-Deab, M. S.; Ohsaka, T. Electrochem. Commun. 2002, 4, 288 https://doi.org/10.1016/S1388-2481(02)00263-1
  3. Ryoo, H.; Kim, Y.; Lee, J.; Shin, W.; Myung, N.; Hong, H.-G. Bull. Korean Chem. Soc. 2006, 27, 672 https://doi.org/10.5012/bkcs.2006.27.5.672
  4. Quinn, B. M.; Lijeroth, P.; Ruiz, V.; Laaksonen, T.; Kontturi, K. J. Am. Chem. Soc. 2003, 125, 6644 https://doi.org/10.1021/ja0349305
  5. Kumar, S.; Zou, S. J. Phys. Chem. B 2005, 109, 15707 https://doi.org/10.1021/jp051981a
  6. Harnish, J. A.; Pris, A. D.; Porter, M. D. J. Am. Chem. Soc. 2001, 123, 5829 https://doi.org/10.1021/ja010564i
  7. Zhong, C. J.; Zheng, W. X.; Leibowitz, F. L. Electrochem. Commun. 1999, 1, 72 https://doi.org/10.1016/S1388-2481(99)00008-9
  8. Leibowitz, F. L.; Zheng, W.; Maye, M. M.; Zhong, C.-J. Anal. Chem. 1999, 71, 5076 https://doi.org/10.1021/ac990752f
  9. Shin, H.; Kang, C. Anal. Sci. 2003, 19, 1667 https://doi.org/10.2116/analsci.19.1667
  10. Bharathi, S.; Nogami, M.; Ikeda, S. Langmuir 2001, 17, 1 https://doi.org/10.1021/la0010572
  11. Cheng, W.; Dong, S.; Wang, E. Langmuir 2002, 18, 9947 https://doi.org/10.1021/la026022b
  12. Finot, M. O.; Braybrook, G. D.; McDermott, M. T. J. Electroanal. Chem. 1999, 466, 234 https://doi.org/10.1016/S0022-0728(99)00154-0
  13. Reetz, M. T.; Helbig, W. H. J. Am. Chem. Soc. 1994, 116, 7401 https://doi.org/10.1021/ja00095a051
  14. Huang, S.; Ma, H.; Zhang, X.; Yong, F.; Feng, X.; Pan, W.; Wang, X.; Wang, Y.; Chen, S. J. Phys. Chem. B 2005, 109, 19823 https://doi.org/10.1021/jp052863q
  15. Ma, H.; Huang, S.; Feng, X.; Zhang, X.; Tian, F.; Yong, F.; Pan, W.; Wang, Y.; Chen, S. ChemPhysChem. 2006, 7, 333 https://doi.org/10.1002/cphc.200500398
  16. Liu, S.; Weaver, J. V. M.; Save, M.; Armes, S. P. Langmuir 2002, 18, 8350 https://doi.org/10.1021/la020496t
  17. Jaramillo, T. F.; Baeck, S.-H.; Cuenya, B. R.; McFarland, E. W. J. Am. Chem. Soc. 2003, 125, 7148 https://doi.org/10.1021/ja029800v
  18. Kuo, P.-L.; Chen, C.-C.; Jao, M.-W. J. Phys. Chem. B 2005, 109, 9445 https://doi.org/10.1021/jp050136p
  19. Lu, J. Q.; Yi, S. S. Langmuir 2006, 22, 3951 https://doi.org/10.1021/la053377x
  20. Chen, S.; Guo, C.; Hu, G.-H.; Wang, J.; Ma, J.-H.; Liang, X.-F.; Zhang, L.; Liu, H.-Z. Langmuir 2006, 22, 9704 https://doi.org/10.1021/la061093m
  21. He, Y.; Yuan, J.; Shi, G.; Wu, P. Mater. Chem. Phys. 2006, 99, 253 https://doi.org/10.1016/j.matchemphys.2005.10.033
  22. Cao, L.; Zhu, T.; Liu, Z. J. Colloid Interface Sci. 2006, 293, 69 https://doi.org/10.1016/j.jcis.2005.06.012
  23. Kwon, K.; Lee, K. Y.; Kim, M.; Lee, Y. W.; Heo, J.; Ahn, S. J.; Han, S. W. Chem. Phys. Lett. 2006, 432, 209 https://doi.org/10.1016/j.cplett.2006.10.058
  24. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782 https://doi.org/10.1021/la0104323
  25. Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Mochrie, S. G. J.; Lurio, L. B.; Ruhm, A.; Lennox, R. B. J. Am. Chem. Soc. 2001, 123, 10411 https://doi.org/10.1021/ja0166287
  26. Chen, W.; Li, C. M.; Chen, P.; Sun, C. Q. Electrochim. Acta 2006, 56, 2845
  27. Youk, J. H.; Park, M.-K.; Locklin, J.; Advincula, R.; Yang, J.; Mays, J. Langmuir 2002, 18, 2455
  28. Sohn, B.-H.; Choi, J.-M.; Yoo, S. I.; Yun, S.-H.; Zin, W.-C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 6368 https://doi.org/10.1021/ja035069w
  29. Peng, Z.; Wang, E.; Dong, S. Electrochem. Commun. 2002, 4, 210 https://doi.org/10.1016/S1388-2481(02)00253-9
  30. Sohn, B. H.; Seo, B. H. Chem. Mater. 2001, 13, 1752 https://doi.org/10.1021/cm000939j
  31. Hicks, J. F.; Young, S.-S.; Murray, R. W. Langmuir 2002, 18, 2288
  32. Yu, A.; Liang, Z.; Cho, J.; Caruso, F. Nano Lett. 2003, 3, 1203 https://doi.org/10.1021/nl034363j
  33. Suk, J.; Lee, J.; Kwak, J. Bull. Korean Chem. Soc. 2004, 25, 1681 https://doi.org/10.5012/bkcs.2004.25.11.1681
  34. Kwak, J.; Anson, F. C. Anal. Chem. 1992, 64, 250 https://doi.org/10.1021/ac00027a003
  35. Podlovchenko, B. I.; Andreev, V. N. Russ. Chem. Rev. 2002, 71, 837 https://doi.org/10.1070/RC2002v071n10ABEH000672
  36. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.; Wiley: New York, 2001; p 242
  37. Takasu, Y.; Iwazaki, T.; Sugimoto, W.; Murakami, Y. Electrochem. Commun. 2000, 2, 671 https://doi.org/10.1016/S1388-2481(00)00101-6
  38. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819 https://doi.org/10.1021/ja043602h
  39. Bergamaski, K.; Pinheiro, A. L. N.; Teixeira-Neto, E.; Nart, F. C. J. Phys. Chem. B 2006, 110, 19271 https://doi.org/10.1021/jp063337h
  40. Overbury, S. H.; Schwartz, V.; Mullins, D. R.; Yan, W.; Dai, S. J. Catal. 2006, 241, 56 https://doi.org/10.1016/j.jcat.2006.04.018

Cited by

  1. Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1983
  2. Gold–silver–graphene hybrid nanosheets-based sensors for sensitive amperometric immunoassay of alpha-fetoprotein using nanogold-enclosed titania nanoparticles as labels vol.692, pp.1, 2007, https://doi.org/10.1016/j.aca.2011.02.061
  3. Gold-silver nanocomposite-functionalized graphene sensing platform for an electrochemiluminescent immunoassay of a tumor marker vol.3, pp.34, 2007, https://doi.org/10.1039/c3ra41666f
  4. Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction vol.34, pp.12, 2007, https://doi.org/10.5012/bkcs.2013.34.12.3835