References
- E. S. Stevens, Green Plastics. Princeton University Press, Princeton, USA (2002).
- A. N. Netravali and S. Chabba, Composites get greener, Materials Today 6, 22-29 (2003).
- S. Chabba and A. N. Netravali, 'Green' composites using modified soy protein concentrate resin and flax fabrics and yarns, Japan Soc. Mech. Engng. (JSME) Int. J. 47, 556-560 (2004).
- P. Lodha and A. N. Netravali, Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced 'green' composites, Compos. Sci. Technol. 65, 647-659 (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
- S. Chabba, Characterization of environment friendly 'green' composites with modified soy protein concentrate and flax yarn and fabric, MS Thesis, Cornell University, USA (2003).
- P. Lodha, Fundamental approaches to improving performance of soy protein isolate based 'green' plastics and composites, PhD Thesis, Cornell University, USA (2004).
- A. K. Mohanty, M. Misra and G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: an overview, Macromol. Mater. Engng. 276, 1-24 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
- A. Gomes, K. Goda and J. Ohgi, Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites, JSME Int. J. 47, 541-546 (2004). https://doi.org/10.1299/jsmea.47.541
- S. Ochi, H. Takagi and H. Tanaka, Mechanical properties of cross-ply 'green' composites reinforced by malina hemp fibers, in: Proc. Int. Workshop 'Green' Compos., Tokushima, Japan, November 19-20 (2002).
- A. N. Netravali, Biodegradable 'green' composites using ramie fibers and soy protein polymer, in: Natural Fibers, Plastics and Composites, F. T. Wallenberger and N. E. Weston (Eds), pp. 321-343. Kluwer Academic Publishers, Boston, USA (2004).
- S. C. Chabba, G. T. Matthews and A. N. Netravali, 'Green' composites using modified soy flour and flax yarns, Green Chemistry 7, 576-581 (2004). https://doi.org/10.1039/b410817e
- S. Nam, Environment-friendly 'green' biodegradable composites using ramie fibers and soy protein concentrate (SPC) polymer, MS Thesis, Cornell University, USA (2002).
- T. Fujii, K. Okubo and N. Yamashita, Development of high performance bamboo composites using micro fibrillated cellulose, in: Proc. 2nd Intern. Conf. High Performance Structural Materials. Ancona, Italy, May 31-June 2 (2004).
- A. N. Netravali, Green composites: current trends and developments, in: Proc. MACRO-04, Thiruvananthapuram, India, December 14-17 (2004).
- A. N. Netravali, Towards advanced 'green' composites, in: Proc. Int. Workshop 'Green' Compos. -3, Kyoto, Japan, March 16-17 (2005).
- W. Helbert, J. Y. Cavaille and A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. 1. Processing and mechanical behavior, Polym. Compos. 17, 604-611 (1996). https://doi.org/10.1002/pc.10650
- T. Nishino, K. Takano and K. Nakamae, Elastic-modulus of the crystalline regions of cellulose polymorphs, J. Polym. Sci. Part B-Polym. Phys. 33, 1647-1651 (1995). https://doi.org/10.1002/polb.1995.090331110
- A. N. Nakagaito and H. Yano, Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure, Appl. Phys. A 80, 155-159 (2003).
- A. N. Nakagaito, S. Iwamoto and H. Yano, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Appl. Phys. A 80, 93-97 (2004).
- J. Turner and C. Karatzas, in: Natural Fibers, Plastics and Composites, F. T. Wallenberger and N. Weston (Eds). Kluwer Academic Publishers, Boston, USA (2004).
- D. T. Grubb and L. Jelinski, Fiber morphology of spider silk: the effects of tensile deformation, Macromolecules 30, 2860-2867 (1997). https://doi.org/10.1021/ma961293c
- H. Borstoel, Liquid crystalline solutions of celulose in phosphoric acid, PhD Thesis, Rijksuniversiteit, Groningen, The Netherlands (1998).
- S. Salmon and S. M. Hudson, Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan, J. Macromol. Sci. Rev. 37, 199-276 (1997).
- X. Huang and A. N. Netravali, Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin, Biomacromolecules 7, 2783-2789 (2006). https://doi.org/10.1021/bm060604g
- P. Lodha and A. N. Netravali, Characterization of Phytagel modified soy protein isolate resin and unidirectional flax yarn reinforced 'green' composites, Polym. Compos. 26, 647-659 (2005). https://doi.org/10.1002/pc.20128
- G. O. Shonaike and G. P. Simon (Eds), Polymer Blends and Alloys. Marcel Dekker, Inc, New York, USA (1999).
- D. Klempner, L. H. Sperling and L. A. Utracki, Interpenetrating Polymer Network. American Chemical Society, Washington DC, USA (1994).
- A. C. Finnefrock, R. Ulrich, G. E. S. Toombes, S. M. Gruner and U. Wiesner, The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates, J. Amer. Chem. Soc. 125, 13084-13093 (2003). https://doi.org/10.1021/ja0355170
- D. Shah, Polymer nanocomposites: structure and dynamics at the interface and their effect on nanohybrid properties, PhD Thesis, Cornell University, USA (2004).
- P. Lodha and A. N. Netravali, Characterization of interfacial and mechanical properties of 'green' composites with soy protein isolate and ramie fiber, J. Mater. Sci. 37, 3657-3665 (2002). https://doi.org/10.1023/A:1016557124372
- S. Luo and A. N. Netravali, Interfacial and mechanical properties of environment-friendly 'green' composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin, J. Mater. Sci. 34, 3709-3719 (1999). https://doi.org/10.1023/A:1004659507231
- B. Miller, P. Muri and L. Rebenfeld, A microbond method for determination of the shear-strength of a fiber-resin interface, Compos. Sci. Technol. 28, 17-32 (1987). https://doi.org/10.1016/0266-3538(87)90059-5