Segmental Motions and Associated Dynamic Mechanical Thermal Properties of a Series of Copolymers Based on Poly(hexamethylene terephthalate) and Poly(1,4-cyclohexylenedimethylene terephthalate)

  • Jeong Young-Gyu (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Lee Sang-Cheol (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Jo Won-Ho (Hyperstructured Organic Materials Research Center and School of Materials Science and Engineering, Seoul National University)
  • Published : 2006.08.01

Abstract

The dynamic mechanical thermal properties of poly(hexamethylene terephthalate) (PHT), poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) and their P(HT-co-CT) random copolymers in the amorphous state were examined as a function of temperature and frequency. All the samples exhibited two main relaxation processes in the plot of tan ${\delta}$ versus temperature: the primary ${\alpha}$-relaxation associated with the glass transition and the secondary ${\beta}$-relaxation attributed to the local segmental motions of mostly cyclohexylene rings for PCT and to cooperative motions of methylene, carboxyl, and phenylene groups for PHT. Both ${\alpha}$- and ${\beta}$-relaxation temperatures increased with increasing CT content. The activation energy of the ${\alpha}$-relaxation increased with increasing CT content, whereas that of the ${\beta}$-relaxation decreased. The sub-glassy secondary ${\beta}$-relaxation processes of PCT and PHT were investigated in terms of the cooperativity of main-chain segmental motions.

Keywords

References

  1. G. Farrow, J. McIntosh, and I. M. Ward, Makromol. Chem., 38, 147 (1960) https://doi.org/10.1002/macp.1960.020380113
  2. J. Bateman, R. E. Richards, G. Farrow, and I. M. Ward, Polymer, 1, 63 (1960) https://doi.org/10.1016/0032-3861(60)90008-2
  3. I. H. Hall and B. A. Ibrahim, Polymer, 23, 805 (1982) https://doi.org/10.1016/0032-3861(82)90138-0
  4. A. Palmer, S. Poulin-Dandurand, J. F. Revol, and F. Brisse, Eur. Polym. J., 20, 783 (1984) https://doi.org/10.1016/0014-3057(84)90114-9
  5. F. Brisse, A. Palmer, B. Moss, D. Dorset, W. A. Roughead, and D. P. Miller, Eur. Polym. J., 20, 791 (1984) https://doi.org/10.1016/0014-3057(84)90115-0
  6. J. H. Lee, Y. G. Jeong, S. C. Lee, B. G. Min, and W. H. Jo, Polymer, 43, 5263 (2002) https://doi.org/10.1016/S0032-3861(02)00370-1
  7. A. K. Ghosh, E. M. Woo, Y. S. Sun, L. T. Lee, and M. C. Wu, Macromolecules, 38, 4780 (2005) https://doi.org/10.1021/ma0473667
  8. C. J. Kibler, A. Bell, and J. G. Smith, U. S. Patent 2901466 (1959)
  9. C. A. Boye, J. Polym. Sci., 55, 263 (1961) https://doi.org/10.1002/pol.1961.1205516125
  10. C. A. Boye, J. Polym. Sci., 55, 275 (1961) https://doi.org/10.1002/pol.1961.1205516126
  11. W. Reddish, Pure Appl. Chem., 5, 723 (1962) https://doi.org/10.1351/pac196205030723
  12. C. J. Kibler, A. Bell, and J. G. Smith, J. Polym. Sci., Part A, 2, 2115 (1964)
  13. A. Hiltner and E. Baer, J. Macromol. Sci.-Phys., B6, 545 (1972)
  14. B. Remillard and F. Brisse, Polymer, 23, 1960 (1982) https://doi.org/10.1016/0032-3861(82)90224-5
  15. L. P. Chen, A. F. Yee, J. M. Goetz, and J. Schaefer, Macromolecules, 31, 5371 (1998) https://doi.org/10.1021/ma971671t
  16. Y. G. Jeong, W. H. Jo, and S. C. Lee, Macromol. Res., 12, 459 (2004) https://doi.org/10.1007/BF03218427
  17. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, John Wiley & Sons, Inc., New York, 1967
  18. T. Murayama, Dynamic Mechanical Analysis of Polymeric Material, Elsevier, New York, 1978
  19. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, Inc., New York, 1980
  20. L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites, 2nd ed., Marcel Dekker, Inc., New York, 1994
  21. E. Riande, R. Diaz-Calleja, M. G. Prolongo, R. M. Masegosa, and C. Salom, Polymer Viscoelasticity, Marcel Dekker, Inc., New York, 2000
  22. L. P. Chen, A. F. Yee, and E. J. Moskala, Macromolecules, 32, 5944 (1999) https://doi.org/10.1021/ma981363a
  23. A. E. Woodward, J. M. Crissman, and J. A. Sauer, J. Polym. Sci., 44, 23 (1960) https://doi.org/10.1002/pol.1960.1204414303
  24. K. H. Illers and H. Breuer, J. Colloid Sci., 18, 1 (1963) https://doi.org/10.1016/0095-8522(63)90100-4
  25. C. Wippler, Polym. Eng. Sci., 33, 347 (1993) https://doi.org/10.1002/pen.760330607
  26. Y. G. Jeong, W. H. Jo, and S. C. Lee, Polymer, 45, 3321 (2004) https://doi.org/10.1016/j.polymer.2004.03.016
  27. A. S. Merenga, C. M. Papadakis, F. Kremer, J. Liu, and A. F. Yee, Colloid Polym. Sci., 279, 1064 (2001) https://doi.org/10.1007/s003960000439
  28. C. D. Armeniades, J. Polym. Sci., Part A2, 9, 1345 (1971) https://doi.org/10.1002/pol.1971.160090801
  29. E. Sacher, J. Macromol. Sci.-Phys., B15, 257 (1978)
  30. M. D. Sefcik, J. Schaefer, E. O. Stejskal, and R. A. McKay, Macromolecules, 13, 1132 (1980) https://doi.org/10.1021/ma60077a020
  31. J. R. Garbow and J. Schaefer, Macromolecules, 20, 819 (1987) https://doi.org/10.1021/ma00170a020
  32. A. S. Maxwell, L. Monnerie, and I. M. Ward, Polymer, 39, 6851 (1998) https://doi.org/10.1016/S0032-3861(98)00138-4
  33. Y. G. Jeong, W. H. Jo, and S. C. Lee, Macromolecules, 33, 9705 (2000) https://doi.org/10.1021/ma000040n
  34. T. G. Fox, Bull. Am. Phys. Soc., 1, 123 (1956)
  35. G. Adam and J. H. Gibbs, J. Chem. Phys., 43, 139 (1965) https://doi.org/10.1063/1.1696442
  36. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Phys., 88, 3113 (2000)
  37. L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials, Elsevier, New York, 1978
  38. C. Xiao, J. Y. Jho, and A. F. Yee, Macromolecules, 27, 2761 (1994) https://doi.org/10.1021/ma00088a017
  39. H. W. Starkweather Jr., Macromolecules, 14, 1277 (1981) https://doi.org/10.1021/ma50006a025
  40. H. W. Starkweather Jr., macromolecules, 21, 1798 (1988) https://doi.org/10.1021/ma00184a043
  41. H. W. Starkweather Jr., Polymer, 32, 2443 (1991) https://doi.org/10.1016/0032-3861(91)90087-Y