X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi (Department of Chemistry, School of Science and Technology Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Murakami Rumi (Department of Chemistry, School of Science and Technology Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Zhang Jianming (Department of Chemistry, School of Science and Technology Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Ozaki Yukihiro (Department of Chemistry, School of Science and Technology Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Mori Katsuhito (Department of Physics, School of Science and Technology, Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Takahashi Isao (Department of Physics, School of Science and Technology, Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Terauchi Hikaru (Department of Physics, School of Science and Technology, Kwansei-Gakuin University, Research Center for Environment Friendly Polymers, Kwansei Gakuin University) ;
  • Noda Isao (The Procter and Gamble Company, Research Center for Environment Friendly Polymers, Kwansei Gakuin University)
  • Published : 2006.08.01

Abstract

Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Keywords

References

  1. Y. Doi, Microbial Polyesters,VCH Publishers, New York, 1990
  2. M. Vert, Biomacromolecules, 6, 538 (2005) https://doi.org/10.1021/bm0494702
  3. A. J. Anderson and E. Dawes, Microbiol. Rev., 54, 450 (1990)
  4. E. A. Dawes, Novel Biodegradable Microbial Polymers, Dordrech Kluwer Academic, 1990
  5. L. M.Lara and W. H.Gjalt, Microbiol. Mol. Biol. Rev., 63, 21 (1991)
  6. T. Iwata and Y. Doi, Macromol. Chem. Phys., 200, 2429 (1999) https://doi.org/10.1002/(SICI)1521-3935(19991101)200:11<2429::AID-MACP2429>3.0.CO;2-#
  7. P. J. Barham, P. Barker, and S. Organ, FEMS Microbiol. Rev., 103, 289 (1992) https://doi.org/10.1016/0378-1097(92)90322-F
  8. P. A. Holmes, in Developments in Crystalline Polymers, D. C. Bassett, Ed., Elsevier, London, 1987, vol. 2, p 1
  9. N. Yoshie, M. Fujiwara, M. Ohmori, and Y. Inoue, Polymer, 42, 8557 (2001) https://doi.org/10.1016/S0032-3861(01)00408-6
  10. R. H. Marchessault, S. Coulombe, H. Morikawa, K. Okamura, and J. F. Revol, Can. J. Chem., 59, 38 (1981) https://doi.org/10.1139/v81-007
  11. E. Chiellini and R. Solaro, Recent Advances in Biodegradable Polymers and Plastics, Wiley-VCH, Weinheim, 2003
  12. Y. Doi, ICBP 2003 First IUPAC International Conference on Bio-Based Polymers, Macromolecular Bioscience, WILEYVCH, Weinheim, 2004, vol. 4, Issue 3
  13. M. M. Satkowski, D. H. Melik, J.-P. Autran, P. R. Green, I. Noda, and L. A. Schechtman, in Biopolymers, A. Steinbüchel and Y. Doi, Eds., Wiley-VCH, Wienhiem, 2001, p 231
  14. M. Yokouchi, Y.Chatani, H. Tadokoro, K. Teranishi, and H. Tani, Polymer, 14, 267 (1973) https://doi.org/10.1016/0032-3861(73)90087-6
  15. J. Cornibert and R. H. Marchessault, J. Mol. Biol., 71, 735 (1972) https://doi.org/10.1016/S0022-2836(72)80035-4
  16. N. Yoshie, H. Menju, H. Sato, and Y. Inoue, Macromolecules, 28, 6516 (1995) https://doi.org/10.1021/ma00123a018
  17. Web site: www.nodax.com
  18. Y. Doi, S. Kitamura, and H. Abe, Macromolecules, 28, 4822 (1995) https://doi.org/10.1021/ma00118a007
  19. G. Kobayashi, T. Shiotani, Y. Shima, and Y. Doi, in Biodegradable Plastics and Polymers, Y. Doi and K. Fukuda, Eds., Elsevier, Amsterdam, 1994, p 410
  20. H. Abe, Y. Doi, H. Aoki, and T. Akehata, Macromolecules, 31, 1791 (1998) https://doi.org/10.1021/ma971559v
  21. M. Kunioka, A. Tamaki, and Y. Doi, Macromolecules, 22, 694 (1989) https://doi.org/10.1021/ma00192a031
  22. H. Sato, M. Nakamura, A. Padermshoke, H. Yamaguchi, H. Terauchi, S. Ekgasit, I. Noda, and Y. Ozaki, Macromolecules, 37, 3763 (2004) https://doi.org/10.1021/ma049863t
  23. H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda, and Y. Ozaki, Macromolecules, 37, 7203 (2004) https://doi.org/10.1021/ma049117o
  24. H. Sato, J. Dybal, R. Murakami, I. Noda, and Y. Ozaki, J. Mol. Struct., 35-36, 744 (2005)
  25. H. Sato, A. Padermshoke, M. Nakamura, R. Murakami, F. Hirose, K Senda, H. Terauchi, S. Ekgasit, I. Noda, and Y. Ozaki, Macromol. Symp., 220, 123 (2005)
  26. R. H. Marchessault and J. Kawada, Macromolecules, 37, 7418 (2004) https://doi.org/10.1021/ma048959k
  27. H. Matsuura, H. Yoshida, M. Hieda, S. Yamadaka, T. Harada, K. Shin-ya, and K. Ohno, J. Am. Chem. Soc., 125, 13910 (2003) https://doi.org/10.1021/ja030538f
  28. T. Harada, H. Yoshida, K. Ohno, and H. Matsuura, Chem. Phys. Lett., 362, 453 (2002) https://doi.org/10.1016/S0009-2614(02)01139-9
  29. P. Hobza and Z. Havlas, Chem. Rev., 100, 4253 (2000) https://doi.org/10.1021/cr990050q