Pre-processing for the Design of Micro-fluid Flow Sensing Elements

  • Kim Jin-Taek (Department of Precision Mechanical Engineering, Chonbuk National University) ;
  • Pak Bock-Choon (School of Mechanical & Aerospace Engineering, Chonbuk National University) ;
  • Lee Cheul-Ro (School of Advanced Materials Engineering, Chonbuk National University) ;
  • Baek B.J. (School of Mechanical & Aerospace Engineering, Chonbuk National University)
  • Published : 2006.06.01

Abstract

A simple finite element analysis is performed to simulate the thermal characteristics of a micro sensor package with thin film heater embedded in the glass wall of a micro-channel. In this paper, Electric characteristics of ITO sputtered heater were presented in this study, which can be used as a map of heater design in the range of available system temperature. The effects of thermo-physical properties of materials, geometrical structure and boundary condition on the thermal performance are also investigated. Finally, the design of micro-flow induced thermal sensor that is capable of measuring fluid flow with a lower flow detection limit of approximately 24pL/s is presented.

Keywords

References

  1. Nguyen, N. T., Wereley, S. T., 'Fundamentals and Applications of Microfluidics,' Artech House, INC., 2002
  2. DeVeo, D. L., 'Thermal Issues in MEMS and Microscale Systems,' IEEE Transactions On Components And Packaging Technologies, Vol. 25, No.4, pp. 576-583, 2003 https://doi.org/10.1109/TCAPT.2003.809110
  3. Lin, Y. C., Yang, C. C, Huang, M. Y., 'Simulation and experimental validation of micro polymerase chain reaction chips,' Sensors And Actuators B 71, pp. 127-133,2000
  4. Zou, Z. Q., Chen, X, Jin, Q. H., Yang, M. S., Zhao, J. L., 'A novel miniaturized PCR multi-reactor array fabricated using flipchip bonding techniques,' J. Micromech. Microeng. 15, pp. 1476-1481,2005 https://doi.org/10.1088/0960-1317/15/8/014
  5. Yang, M., Pal, R., Burns, M. A., 'Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices,' J. Micromech. Microeng. 15, pp. 221-230, 2005 https://doi.org/10.1088/0960-1317/15/1/031
  6. Edwards, T. L., Gale, B. K., Frazier, A. B., 'A Micromachined Therrnal Field-Flow Fractionation System,' in Proc. of Transducers '99, pp. 742-745, 1998
  7. Elwenspoek, M., Wiegerink, R., 'Mechanical Microsensors,' Springer
  8. Qiu, L., Hein, S., Obermeier, E., Schubert, A., 'Micro gas-flow sensor with integrated heat sink and flow guide,' Sensors and Actuators A 54, pp. 547-551, 1996
  9. van der Wiel, A. J., Linder, C., de Rooij, N. E, Bezinge, A., 'A liquid velocity sensor based on the hot-wire principle,' Sensors and Actuators A, 37-38, pp. 693-697, 1993 https://doi.org/10.1016/0924-4247(93)80117-Y
  10. Kersjes, R., Liebscher, E, Spiegel, E., Manoli, Y., Mokwa, W., 'An invasive catheter flow sensor with on-chip CMOS readout electronics for the on-line determination of blood flow,' Sensors and Actuators A 54, pp. 563-567, 1996
  11. Lammerink, T. S. J., Tas, N. R., Elwenspoek, M., Fluitman, J. H. J., 'Micro-liquid flow sensor,' Sensors and Actuators A, 37-38, pp.45-50, 1993 https://doi.org/10.1016/0924-4247(93)80010-E
  12. Gaitan, M., Locascio, L. E., 'Embedded Micro-Heating Elements in Polymeric Micro-Channels for Temperature Control and Fluid Flow Sensing,' J. Res. Natl. Inst. Stand. Technol. 109, pp. 335344,2004 https://doi.org/10.6028/jres.109.025
  13. Narshimha Rao, K., 'Preparation of transparent conductive oxide films by activated reactive evaporation,' OPT. Eng. 41 (11), pp. 2705-2706., 2002 https://doi.org/10.1117/1.1513798
  14. COMSOL Multi-physics 3.2 user's guide 2005
  15. A. M. Christensen, D. A. Chang-Yen, B. K. Gale, 'Characterization of interconnects used in PDMS microfluidic systems,' J. Micromech. Microeng. 15, pp. 928-934, 2005 https://doi.org/10.1088/0960-1317/15/5/005