• Title/Summary/Keyword: sputtered heater

Search Result 7, Processing Time 0.018 seconds

Pre-processing for the Design of Micro-fluid Flow Sensing Elements

  • Kim Jin-Taek;Pak Bock-Choon;Lee Cheul-Ro;Baek B.J.
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2006
  • A simple finite element analysis is performed to simulate the thermal characteristics of a micro sensor package with thin film heater embedded in the glass wall of a micro-channel. In this paper, Electric characteristics of ITO sputtered heater were presented in this study, which can be used as a map of heater design in the range of available system temperature. The effects of thermo-physical properties of materials, geometrical structure and boundary condition on the thermal performance are also investigated. Finally, the design of micro-flow induced thermal sensor that is capable of measuring fluid flow with a lower flow detection limit of approximately 24pL/s is presented.

Enhancement of Response Speed in a-Ge:H Thin Film Semiconductor (수소화된 박막 비정질 Ge 반도체의 전기적 응답속도 향상 방안)

  • 최규남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.261-264
    • /
    • 1995
  • The response speed enhancement in picosecond photoconductor made from RF planar magnetron sputtered hydrogenated amorphous germanium thin film is discussed. Pulsed laser annealing technique was used to fabricate the highly conductive ohmic contacts and to remove the shallow deflects in the deposited photoconductive film using the different laser powers. Measured V-I curve showed -5 times bigger conductance in photoconductive gap than the one used by the conventional vacuum annealing method using strip heater.

  • PDF

Design of a Large Magnetron Sputtering System for TFT LCD and Investigation of Sputtered AI Film Properties (TFT LCD 제조용 대면적 Magnetron Sputtering 장치 설계와 Al 성장막 특성 조사)

  • 유운종
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.480-485
    • /
    • 1993
  • Factros considered building the magnetron sputtering system for TFT LCD (thin film transistor liquid crystal display0 metallization were thin film thichnes uniformity, temperature uniformity and the pressure gradient of sputtering gas flow in vacuum chamber, base pressure, and the stability fo the carrier moving . The system was consisted of a deposition chamber, a pre-heating chamber, a RF-precleaning chamber and a load/unload lock chamber. The system was designed to handle a substrate with dimension of 400$\times$400mm. The temperautre uniformity of a heater table developed showed $250 ^{\circ}C\pm$5% accuracyon the substrate glass. A base pressure of 1.8 $\times$10-7 torr was obtained after 24 hours pumping with a cryo pump. After an aluminum target was installed in a sputtering source and the film wa sdeposited on the glass, the uniformity, reflectivity and sheet resistance of the deposited film were measured.

  • PDF

RF Bias Effect of ITO Thin Films Reactively Sputtered on PET Substrates at Room Temperature

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2004
  • ITO films were deposited on polyethylene terephthalate substrate by a dc reactive magnetron sputtering using rf bias without substrate heater and post-deposition thermal treatment. The dependency of rf substrate bias on plasma sputter processing was investigated to control energetic particles and improve ITO film properties. The substrate was applied negative rf bias voltage from 0 to -80 V. The composition of indium, tin, and oxygen atoms is strongly depended on the rf substrate bias. Oxygen deficiency is the highest at rf bias of -20 V. The electrical and optical properties of ITO films also are dominated obviously by negative rf bias.

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

The characteristics of Pt thin films prepared by DC magnetron sputter (DC Magnetron Sputter로 제조된 Pt 박막의 특성)

  • Na, Dong-Myong;Kim, Young-Bok;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2007
  • Thin films of platinum were deposited on a $Al_{2}O_{3}/ONO(SiO_{2}-Si_{3}N_{4}-SiO_{2})/Si$-substrate with an 2-inch Pt(99.99 %) target at room temperature for 20, 30 and 60 min by DC magnetron sputtering, respectively X-ray diffract meter (XRD) was used to analyze the crystallanity of the thin films and field emission scanning electron microscopy (FE-SEM) was employed for the investigation on crystal growth. The densification and the grain growth of the sputtered films have a considerable effect on sputtering time and annealing temperatures. The resistance of the Pt thin films was decreased with increasing deposition time and sintering temperature. Pt micro heater thin film deposited for 60 min by DC magnetron sputtering on an $Al_{2}O_{3}$/ONO-Si substrate and annealed at $600^{\circ}C$ for 1 h in air is found to be a most suitable micro heater with a generation capacity of $350^{\circ}C$ temperature and 645 mW power at 5.0 V input voltage. Adherence of Pt thin film and $Al_{2}O_{3}$ substrate was also found excellent. This characteristic is in good agreement with the uniform densification and good crystallanity of the Pt film. Efforts are on progress to find the parameters further reduce the power consumption and the results will be presented as soon as possible.

Fabrication of the Microchannel Integrated with the Inner Sensors for Accurate Measuring Fluid Temperature (유체의 정확한 온도 측정을 위하여 내부 센서를 집적한 마이크로채널 제작)

  • Park, Ho-Jun;Im, Geun-Bae;Son, Sang-Yeong;Song, In-Seop;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.449-454
    • /
    • 2002
  • A rectangular straight microchannel, integrated with the resistance temperature detectors(RTDs) for temperature sensing and a micro-heater for generating the Temperature gradient along the channel, was fabricated. Its dimension is 57${\mu}{\textrm}{m}$(H)$\times$200${\mu}{\textrm}{m}$(W)$\times$48,050${\mu}{\textrm}{m}$(L), and RTDs were placed at the inner-channel wall. Si wafer was used as a substrate. For the fabrication of RTDs, 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, the glass wafer was bonded with Si wafer by anodic bonding, so that the RTDs are located inside the microchannel. Temperature coefficient of resistance(TCR) values of the fabricated Pt-RTDs were 2800~2950ppm$^{\circ}C$ and the variation of TCR value In the range of O~10$0^{\circ}C$ was less than 0.3%. Therefore, it was proved that the fabricated Pt-RTDs without annealing were excellent as temperature sensors. The temperature distribution in the microchannel was investigated as a function of mass flow rate and heating power. The temperature increase rate diminished with decreasing the applied power and increasing the mass flow rate. It was confirmed from the comparison with the simulation results that the temperature measured inside the microchannel is more accurate than measuring the temperature measured at the outer wall. The proposed temperature sensing method and microchannel are expected to be useful in microfluidics researches.