탄화수소 탐지를 위한 해양 인공송신원 전자탐사

Marine Controlled-source Electromagnetic Surveys for Hydrocarbon Exploration

  • 김희준 (부경대학교 환경탐사공학과) ;
  • 한누리 (서울대학교 지구환경시스템공학부) ;
  • 최지향 (서울대학교 지구환경시스템공학부) ;
  • 남명진 (한국지질자원연구원 지하수지열연구부) ;
  • 송윤호 (한국지질자원연구원 지하수지열연구부) ;
  • 서정희 (서울대학교 지구환경시스템공학부)
  • Kim, Hee-Joon (Department of Environmental Exploration Engineering, Pukyong National University) ;
  • Han, Nu-Ree (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Choi, Ji-Hyang (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Nam, Myung-Jin (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yoon-Ho (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Jung-Hee (Department of Civil, Urban and Geosystem Engineering, Seoul National University)
  • 발행 : 2006.05.31

초록

탄화수소 확정매장량의 부족으로 인해, 주로 육상이나 천해에서 수행되던 탄화수소 탐사는 점차 대륙붕을 넘어 깊은 바다까지 확대되고 있다. 심해에서도 탄성파 자료의 획득이 가능하지만, 탄산염암, 화산암 등이 분포하는 해저지층, 해저 영구 동토 지역 등과 같이 탄성파의 반사 강도가 강하고 산란이 심한 지층에서 얻은 자료는 지층의 분석이 쉽지 않기 때문에 보완 탐사가 필요하다. 탄화수소의 전기비저항이 높은 특성으로 인하여 전자탐사로 그 부존 유무를 판단할 수 있으므로, 해양 인공송신원 전자탐사는 석유 탐사의 보완적인 방법의 하나로써 이용되기 시작하였다. 이 탐사 방법은 천해지역보다 오히려 심해지역에서 더 높은 감도를 얻을 수 있어서 특히 심해지역의 보완 탐사로 유용하다. 여러 석유회사에서 전자탐사가 보완 탐사로 유용함을 인식한 지는 불과 5년 밖에 되지 않았지만, 현재는 시추 지역 선정에도 전자탐사를 이용하고 있다. 전자탐사는 도입 초기부터 매우 훌륭한 결과를 얻었으며, 최근에는 여러 회사에서 탄화수소 탐사를 위해 자기지전류탐사나 전자탐사를 수행하고 있다.

The shortage of proven hydrocarbon reserves has resulted in exploration progressing from the offshore into progressively deeper water of the continental shelf. Despite the success of seismic acquisition at ever greater depths, there are marine geological terrenes in which the interpretation of seismic data is difficult, such regions dominated by scattering or high reflectivity that is characteristic of carbonate reefs, volcanic cover and submarine permafrost. A marine controlled-source electromagnetic (CSEM) method has recently been applied to the oil and gas exploration thanks to its high-resistivity characteristics of the hydrocarbon. In particular, this method produces better results in terms of sensitivity under the deep water environment rather than the shallow water. Only in the last five years has the relevance of CSEM been recognized by oil companies who now use it to help them make exploration drilling decisions. Initial results are most promising and several contractors now offer magnetotelluric and CSEM services.

키워드

참고문헌

  1. Bhuyian, A. H., Wicklund, To, and Johansen, So, 2006, Highresistivity anomalies at Modgunn arch in the Norwegian Sea, First Break, 24, January, 39-44
  2. Chave, Ao D., Constable, S., and Edwards, N., 1991, Electrical exploration methods for seafloor, in Nabighian, M. No, ed., Electromagnetic Methods in Applied Geophysics, Society of Exploration Geophysicists, Vol II, 931-9660
  3. Chave, A. Do, and Cox, C., 1982, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans. I. Forward problem and model study, Journal of Geophysical Research, 87, 5327-5338 https://doi.org/10.1029/JB087iB07p05327
  4. Constable, S., and Cox, C., 1996, Marine controlled source electromagnetic sounding - II: The PEGASUS experiment, Journal of Geophysical Research, 97, 5519-5530
  5. Constable, S., and Weiss, C. J., 2006, Mapping thin resistors and hydrocarbons with marine EM methods: Insights from lD modeling, Geophysics, 71, G43-G51 https://doi.org/10.1190/1.2187748
  6. Eidesmo, To, Ellingsrud, So, MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S., Kong, EN., and Westerdahl, H., 2002, Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas, First Break, 20, 144-152
  7. Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M. C., MacGregor, L. M., and Constable, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola, Leading Edge, 21, 972-982 https://doi.org/10.1190/1.1518433
  8. Guo, Y., Ko, H. w., and White, D. M., 1998, 3D localization of buried objects by nearfield electromagnetic holography, Geophysics, 63, 880-889 https://doi.org/10.1190/1.1444398
  9. Hyndman, R. D., Spence, G D., Chapman, N. R., Riedel, M., and Edwards, R. N., 2001, Geophysical studies of marine gas hydrate in northern Cascadia, in Paull, C. K., and Dillon, W. D., eds., Natural Gas Hydrates, Occurrence, Distribution and Detection, Geophysical Monograph Series No. 124, American Geophysical Union (AGU), 273-295
  10. Johansen, S., Amundsen, H. E. E, Rosten, T., Ellingsrud, S., Eidesmo, T., and Bhuyian, A. H., 2005, Subsurface hydrocarbons detected by electromagnetic sounding, First Break, 23, March, 31-36
  11. Kaufman, A. A., and Keller, G. V., 1983, Frequency and transient soundings, Elsvier
  12. Lee, S., McMechan, G. A., and Aiken, C. L., 1987, Phase-field imaging: The electromagnetic equivalent of seismic migration, Geophysics, 52, 678-693 https://doi.org/10.1190/1.1442335
  13. Levy, S., Oldenburg, D., and Wang, J., 1988, Subsurface imaging using magnetotelluric data, Geophysics, 53, 104-117 https://doi.org/10.1190/1.1442393
  14. MacGregor, L. M., Constable, S., and Sinha, M. C., 1998, The RAMESSES experiment-III: Controlled source electromagnetic sounding of the Reykjanes Ridge at $57^{\circ}$45', Journal of Geophysical Research, 135, 773-789 https://doi.org/10.1046/j.1365-246X.1998.00705.x
  15. MacGregor, L. M., Constable, S., and Sinha, M. C., 2001, Electrical resistivity structures of the Valu Fa Ridge, Lau basin, from marine controlled source electromagnetic sounding, Geophysical Journal International, 146, 217-236 https://doi.org/10.1046/j.1365-246X.2001.00440.x
  16. McBarnet, A., 2004, All at Sea with EM, Offihore Eng., 29, 20-22
  17. Oldenburg, D., Eso, R., Napier, S., and Haber, E., 2005, Controlled source electromagnetic inversion for resource exploration, First Break, 23, July, 67-73
  18. Pellerin, L., Labson, V. F., and Pfeifer, M. C., 1995, VETEM Avery early time electromagnetic system, Proceeding of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), pp. 725-731
  19. Schwalenberg, K., Willoughby, E., Mir, R., and Edwards, N., 2005, Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones, First Break, 23, April, 57-63
  20. Tompkins, M. 1., 2004, Marine controlled-source electromagnetic imaging for hydrocarbon exploration: interpreting subsurface electrical properties, First Break, 22, August, 45-51
  21. Zhdanov, M. S., and Frenkel, M. A., 1983, The solution of the inverse problems on the basis of the analytical continuation of the transient electromagnetic field in reverse time, Journal of Geomagnetism and Geoelectricity, 35, 745-765
  22. Zhdanov, M. S., Traynin, P., and Portniaguine, O., 1995, Resistivity imaging by time domain electromagnetic migration (TDEMM), Exploration Geophysics, 26, 186-194 https://doi.org/10.1071/EG995186