한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula

  • Choi Cwang-Yong (Department of Geography, Rutgers The State University of New Jersey) ;
  • Kim Jun-Su (Department of Meteorology, University of Utah) ;
  • Won Myoung-Soo (Forest Fire Division, Korea Forest Research Institute)
  • 발행 : 2006.06.01

초록

대류권 하부의 높은 대기 불안정도와 건조도에 의해 바람이 강한 조건하에 화재 연료도 건조해지면 산불 통제가 어렵고 대형산불에 의한 더 많은 산림자원과 계산의 손실을 초래할 수 있다. 본 연구에서 제시된 장기간(1979-2005)의 Haines Index는 한반도 상의 대기 불안정도와 건조도의 시공간적 패턴이 우리나라 산불 발생빈도에 중요한 영향을 미치고 있음을 잘 보여주고 있다. 산불 발생빈도와 Haines Index 사이의 지수회귀모델은 주요 산불 발생기간동안(12월-4월)의 Haines Index 일평균 값 혹은 월별 발생빈도가 우리나라 산불 발생빈도와 통계적으로 유의미하게 상관되어 있음을 보여준다. 지리정보시스템(GIS)에서 수치표고모델(DEM)을 고려하여 작성한 Haines Index 기후도에 따르면, 5 이상의 높은 Haines Index는 주로 해발고도 500m 이하의 한반도 북서 저지대를 중심으로 4-5월에 자주 발생하고 있다. 이러한 Haines Index의 발생빈도는 1990년대 중반 이후 한반도 전체적으로 증가하는 추세를 보이고, 특히 경상북도와 동해안 지역을 따라 산불기간 동안 가장 뚜렷하게 증가하는 패턴을 보였다. 연구기간 동안 높은 Haines Index가 2-3일 연속적으로 발생한 극사상(extreme events)이 나타나는 시기의 500hPa 종관 평균도에 따르면, 오흐츠크해에 발달한 한랭저기압이 한반도 중층대기의 기압경도력을 높여 동서의 강한 바람장을 형성하는데 도움을 주고 있음을 알 수 있다. 이러한 결과들은 현재 우리나라 산불 예보 시스템에 대기 불안정도나 건조도와 같은 대기의 수직적 요소들의 시 공간적 특성도 고려되어야 하는 필요성을 잘 보여준다.

Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

키워드

참고문헌

  1. Burgan, R.E., Andrews, P.L., Bradshaw, L.S., Chase, C.H., Hartford R.A., and Latham, D.J., 1997, WFAS: wildland fire assessment system, Fire Management Notes, 57(2), 14-17
  2. Choi, G., Kwon W.-T., and Robinson, D.A., 2006, Long-term spatial patterns and recent trends of seasonal onset and duration in South Korea, Journal of the Korean Geographical Society (in review)
  3. Crimmins, M.A., 2006, Synoptic climatology of extreme fire-weather conditions across the southwest United States, International Journal of Climatology, 26, 1001-1016 https://doi.org/10.1002/joc.1300
  4. Deeming, J.E., Burgan, R.E., and Cohen, J.D., 1977, The National Fire-Danger Rating System - 1978. Gen. Tech. Rep. INT-39. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station
  5. Flannigan, M.D. and Harrington, J.B., 1988, A study of' the relation of meteorological variables to monthly provincial area burned by wildland fire in Canada (1953 - 80), Journal of Applied Meteoro-logy, 27(4), 441- 452 https://doi.org/10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2
  6. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Roy, J., and Joseph, D., 1996, The NCEP/NCAR Reanalysis 40year Project, Bulletin of the American Meteorological Society, 77, 437-471 https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  7. Haines, D.A., 1988, A lower atmospheric severity index for wildland fire, National Weather Digest, 13(2), 23-27
  8. In H.-J. and Zhong, S., 2005, Validation of the Haines Index predicted from real-time high-resolution MM5 forecasts using rawinsonde observations over the eastern half of the USA, International Journal of Wildland Fire, 14(3), 233-244 https://doi.org/10.1071/WF04056
  9. Krider, E.P., Noggle, R.C., Pifer, A.E., and Vance, D.L., 1980, Lightning direction-finding systems for forest fire detection, Bulletin of the American Mete-orological Society, 61(9), 980-986 https://doi.org/10.1175/1520-0477(1980)061<0980:LDFSFF>2.0.CO;2
  10. Lee. S.Y., 2005, Fire mitigation near the forest, Magazine of the Korean Society of Hazard Mitigation, 5(2), 66-70 (in Korean)
  11. Lee. S.Y., and Won, M.S., 2004, The Korean forest fire danger prediction system, Journal of National Institute for Disaster Prevention, 6(4), 18-24 (in Korean)
  12. Price, C. and Rind, D. 1994, The impact of a $2{\times}CO_2$ climate on lightning-caused fires, Journal of Climate, 7(10), 1484 -1494 https://doi.org/10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
  13. Reinhard, M., Rebetez, M., and Schlaepfer, R., 2005, Recent climate change: Rethinking drought in the context of forest fire research in Ticino, South of Switzerland, Theoretical and Applied Clima-tology, 82, 17-25 https://doi.org/10.1007/s00704-005-0123-6
  14. Rorig, M.L. and Ferguson, S.A., 1999, Characteristics of lightning and wildland fire ignition in the Pacific Northwest, Journal of Applied Meteorology, 38(11), 1565-1575 https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2
  15. Rorig, M.L. and Ferguson, S.A., 2002, The 2000 fire season: lightning-caused fires, Journal of Applied Meteorology, 41(7), 786-791 https://doi.org/10.1175/1520-0450(2002)041<0786:TFSLCF>2.0.CO;2
  16. Simard, A.J., Haines, D.A., and Main, W.A., 1985, Relations between E1 Nino/Southern Oscillation anomalies and wildland fire activity in the United States, Agriculture and Forestry Meteorology, 36, 93-104 https://doi.org/10.1016/0168-1923(85)90001-2
  17. Skinner, W.R., Stocks, B.J., Martell, D.L., Bonsal, B., and Shabbar, A., 1999, The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada, Theoretical and Applied Climatology, 63, 89-105 https://doi.org/10.1007/s007040050095
  18. Skinner, W.R., Flannigan, M.D., Stocks, B.J., Martell, D.J., Wotton, B.M., Todd, J.B., Mason, J.A., Logan, K.A., and Bosch, E.M., 2002, A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, Theoretical and Applied Climatology, 71, 157-169 https://doi.org/10.1007/s007040200002
  19. Stocks, B.J., Lawson, B.D., Alexander, M.E., Van Wagner, C.E., McAlpine, R.S., Lynham, T.J., and Dube, D.E., 1989, The Canadian Forest Fire Danger Rating System: An overview, The Forestry Chronicle, 65(6), 450-457 https://doi.org/10.5558/tfc65450-6
  20. Swetnam, T.W., and Betancourt, J.L., 1990, Fire-Southern Oscillation relations in the southwestern United States, Science, 249, 1017-1020 https://doi.org/10.1126/science.249.4972.1017
  21. Trigo, R.M. and Pereira, J.M.C., Pereira, M.G., Mota, B., Calado, T.J., Dacamara, C.C., and Santo, F.E., 2006, Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal, International Journal of Climatology (in press)
  22. Van Wagner, C.E., 1987, Development and structure of the Canadian Forest Fire Weather Index System, Canadian Forestry Service, Headquarters, Ottawa, Forestry Technical Report, 35
  23. Werth, P. and Ochoa, R., 1993, The evaluation of Idaho wildland fire growth using the Haines Index, Weather and Forecasting, 8(2), 223-234 https://doi.org/10.1175/1520-0434(1993)008<0223:TEOIWG>2.0.CO;2
  24. Werth, J. and Werth, P., 1998, Haines Index climatology for the western United States, Fire Management Note, 58(3), 8-17
  25. Westerling, A.L. , Gershunov, A., Brown, T.J. , Cayan, D.R., and Dettinger, M.D., 2003, Climate and wildla-nd fire in the western United States, Bulletin of the American Meteorological Society, 84(5), 595-604 https://doi.org/10.1175/BAMS-84-5-595
  26. http://cwfis.cfs.nrcan.gc.ca/en/index_e.php
  27. http://forestfire.kfri.go.kr/
  28. http://industry.kma.go.kr/APP/sub_APP11.htm
  29. http://ingrid.ldeo.columbia.edu/dochelp/QA/Basic/dewpoint.html
  30. http://www.foa.go.kr/
  31. http://www.wfas.us/index.php
  32. http://www.fs.fed.us/land/wfas/haines.gif